
MiddleWhere: A Middleware for Location Awareness
in Ubiquitous Computing Applications

Anand Ranganathan, Jalal Al-Muhtadi, Shiva Chetan,
Roy Campbell, M. Dennis Mickunas

Department of Computer Science, University of Illinois at Urbana Champaign,
1304 W. Springfield Ave., Urbana, IL 61801.

{ranganat, almuhtad, chetan, rhc, mickunas}@cs.uiuc.edu

Abstract. Location awareness significantly enhances the functionality of ubiq-
uitous computing services and applications, and enriches the way they interact
with users and resources in the environment. Many different alternative or
complementary location sensing technologies are available. However, these
technologies give location information in different formats and with different
resolution and confidence. In this paper we introduce “MiddleWhere” a distrib-
uted middleware infrastructure for location that separates applications from lo-
cation detection technologies. MiddleWhere enables the fusion of different lo-
cation sensing technologies and facilitates the incorporation of additional loca-
tion technologies on the fly as they become available. MiddleWhere utilizes
probabilistic reasoning techniques to resolve conflicts and deduce the location
of people given different sensor data. Besides, it allows applications to deter-
mine various kinds of spatial relationships between mobile objects and their en-
vironment, which is key in enabling a strong coupling between the physical and
virtual world, as emphasized by ubiquitous computing. We have integrated
MiddleWhere with our ubiquitous computing infrastructure, and have verified
its flexibility and usefulness by incorporating various location sensing tech-
nologies and building a number of location-sensitive applications on top of it.

1 Introduction

Ubiquitous computing has inspired the construction of active, information-rich physi-
cal spaces that encompass large numbers of interconnected computer devices and
embedded processors. This dust of computing machinery will be providing new func-
tionality, offering personalized services, and supporting omnipresent applications.
Location awareness enables significant functionality to ubiquitous computing applica-
tions, users, resources and the ways they interact. It allows ubiquitous computing
environments to tailor themselves according to users’ preferences and expectations,
and reconfigure the available resources in the most efficient way to meet users’ de-
mands and provide seamless interaction. For example, applications and data can
follow users as they roam around, content can be customized based on users’ location,
and physical surroundings can be customized according to their inhabitants.

A plethora of different alternative or complementary location technologies and
sensors are available. The different technologies have different capabilities and as-

sumptions and provide assorted levels of location accuracy. No single location sens-
ing technology has emerged as a clear winner in all kinds of environments. For exam-
ple, GPS is the de facto location technology for wide outdoor areas; however it does
not work in covered areas or indoors. For indoor environments, many technologies
have been proposed based on badges, wireless devices, etc. We expect different loca-
tion sensing technologies to be deployed in different environments depending on the
specific requirements of the environment. Some environments may even have multi-
ple location technologies deployed.

We believe that ubiquitous computing environments must provide middleware
support for fusing data from different location technologies to get a more complete
picture of the physical environment and its contents, and to determine location with
higher accuracy. Further, a middleware-based solution enables the separation of ap-
plications from the location detection and sensing technologies. This makes it possi-
ble to extend the infrastructure with new location technologies on the fly, as they
become available, without any change to existing applications and services.

In this paper, we propose a middleware for location-awareness called “Middle-
Where.” MiddleWhere integrates multiple location technologies and presents applica-
tions with a consolidated view of the location of mobile objects (which may be per-
sons or the devices they carry). It handles conflicting information from different sen-
sors based on the confidence of their readings. MiddleWhere maintains a model of the
physical layout of the environment and allows deriving various spatial relationships
between mobile objects and their physical environment. Since no sensor can accu-
rately sense location, MiddleWhere associates a probability value with location in-
formation and spatial relationships. Ubiquitous applications or services using this
middleware can utilize these probability values, and choose to act upon location in-
formation only if it is accurate “enough” for their purposes.

We have integrated MiddleWhere in our prototype ubiquitous computing environ-
ment. It currently fuses location information from four different technologies, and has
allowed the rapid development of many location aware applications.

1.1 Features of MiddleWhere

MiddleWhere offers a number of advantages in the development of location-aware
applications and the deployment of location sensing technologies in ubiquitous com-
puting environments:

1. Incorporation of multiple location sensing technologies. MiddleWhere allows
the deployment of different kinds of location detection or tracking technologies with
different characteristics. Location information can be got from RF-based badges,
Ubisense™ tags [1], card swipes, login information on desktops, fingerprint recogniz-
ers, Bluetooth, etc. These different technologies give location data with different
resolutions and different levels of confidence. MiddleWhere fuses location data from
multiple sensors to get a spatial probability distribution of the location of the mobile
object. It can also handle conflicting data obtained from different sensors.

2. Handling the temporal nature of location information. The quality of location
data depends on how fresh it is. As time goes on, the quality of location data reduces.
MiddleWhere handles this temporal degradation of the quality of location data by

reducing the confidence of location data with time. For example, people in our build-
ing have to swipe their ID cards on a card reader whenever they enter certain rooms.
Hence, at the time of swiping their card, their location is known with high confidence.
With the passage of time, however, this location data becomes less reliable, since they
might have left the room.

3. Hybrid Location Model. MiddleWhere employs a hybrid location model that
uses both coordinate as well as symbolic models of location. Location-sensitive appli-
cations can express locations either in terms of coordinates with respect to a certain
axis of reference, or in terms of symbolic names (such as floor or room numbers, etc.)
MiddleWhere also allows easy conversion between the two forms of location data.
This gives application developers maximum flexibility in expressing locations in a
manner suitable to their applications.

4. Push and Pull Modes of Interaction. Location-sensitive applications can interact
with the Location Service using either a push or a pull mode. They can ask queries
about the current location of objects or they can ask to be notified whenever a certain
location-based condition becomes true.

5. Handles region-based and object-based locations. There are two kinds of loca-
tion information that most applications are interested in. (a) Object-based location –
this relates to the location of objects, e.g. “where is person X?” (b) Region-based
location – this relates to the objects found within a region, e.g. “who are the people in
room 3105?”

6. Model of the world. MiddleWhere uses a spatial database to model the physical
world. The physical layout of the environment (such as position of various rooms and
corridors) as well as relevant physical objects (like displays and tables) are repre-
sented in the spatial database.

7. Spatial Relationships between objects. An important feature that distinguishes
MiddleWhere from other location middleware is its ability to deduce spatial relation-
ships between mobile objects and their physical environment (which includes other
mobile objects, static objects like tables and displays, and physical locations like
rooms and corridors). Examples of spatial relationships that are deduced by Middle-
Where include proximity to another object, collocation of two objects in a certain
region, containment of an object within a region and so on. MiddleWhere also associ-
ates probabilities with these spatial relationships. This allows MiddleWhere to be
especially suited to the requirements of ubiquitous computing environments. These
environments emphasize a strong coupling between the physical and virtual worlds,
and MiddleWhere provides functions to relate the two.

The remainder of the paper is divided as follows. Section 2 gives a brief overview
of MiddleWhere architecture. Section 3 describes MiddleWhere’s location model.
Section 4 talks about the location service and reasoning engine components of Mid-
dleWhere. Section 5 explains the spatial database. Section 6 describes the sensor
technologies we used. Section 7 gives a brief explanation of our implementation.
Section 8 briefly mentions some applications that use the system. Finally, we con-
clude the paper with evaluations, related work, and future work.

2 Architecture

MiddleWhere uses a
layered architecture for
collecting sensor infor-
mation, representing it in
a spatial database and
reasoning about it. Fig-
ure 1 shows the architec-
ture of MiddleWhere.

Location sensors send
information to the spatial
database through the
MiddleWhere system.
Adapters map raw sen-
sor information into a
common representation to be stored in the spatial database. Adapters can be pro-
grammed to filter certain events or send information to the MiddleWhere system at
varying rates.

The spatial database stores a representation of the physical space as a collection of
basic geometric types such as points, lines and polygons. Sensor information is also
stored as a separate table in the database. The database provides geometric functions
such as distance, containment and intersection that are used for spatial reasoning.

The reasoning engine uses sensor and spatial model information in the database to
determine an object’s location with a certain probability. It fuses data from different
sensors and reasons about relationships between mobile objects and regions. In the
next sections we describe the different components of MiddleWhere in more detail.

3 Location Model

MiddleWhere uses a hybrid location model, which includes both coordinate as well
as symbolic location information. A coordinate location model expresses location data
in the form of an (x,y,z) coordinate with respect to certain reference axes. A symbolic
location model gives names to various location regions (such as rooms or floors).

MiddleWhere views location in a hierarchical manner, which makes it suitable for
both outdoor and indoor environments. Outdoor environments can be hierarchically
divided into countries, states, cities, boroughs, blocks and so on. Indoor locations
consist of buildings, floors and rooms. In this paper, we focus on indoor environ-
ments, though the middleware can be extended to outdoor environments as well. The
coordinate model of location also follows a hierarchical organization. Each building,
floor and room has its own coordinate axes and a point of origin. Locations within a
room can be expressed with respect to the coordinate system of the room, the floor or
the building. MiddleWhere stores the relationships between the different coordinate
axes, and hence coordinates can be easily converted from one system to another.

Figure 1. MiddleWhere Architecture

Having multiple coordinate axes for different levels of granularity within a build-
ing allows easier specification of location information. For example, if a location-
sensitive application is being developed for a specific room, the application developer
can specify locations with respect to the room’s coordinate system. He does not have
to worry about the coordinate system of the floor or the building. Forcing developers
to adhere to a single coordinate system would make their applications unwieldy and
difficult to change.

MiddleWhere allows defining symbolic locations by giving names to specific re-
gions. Each symbolic location is associated with a coordinate location in a certain
coordinate system. For example, names of rooms are associated with the vertices of a
polygon representing the room. These vertices are expressed with respect to the coor-
dinate system of the floor.

The location model defines three types of locations: points, lines and polygons.
Symbolic locations can be defined for points, lines or polygons. For example, a sym-
bolic point location can be defined for a light-switch by giving its (x, y, z) position
with respect to the rooms or floors coordinate system. A symbolic line location can be
defined for a door, and a polygon for a table or the floor-space next to a wall mounted
screen.

3.1 GLOB

MiddleWhere represents a location in a hierarchical format called a GLOB (Gaia
LOcation Byte-string). A GLOB can represent both coordinate as well as symbolic
locations. Also, GLOBs can represent point, line or polygon regions. In the case of a
coordinate location, the GLOB contains information about the axes with respect to
which the coordinates are expressed. A GLOB uses a hierarchical representation of
location similar to a directory structure. Some examples of GLOBs are:
• SC/3/3216/lightswitch1 represents a point location The same location may also be

represented in a coordinate format as SC/3/3216/(12,3,4) . This means that the
lightswitch1 is located at the coordinate (12,3,4) with respect to the coordinate sys-
tem of room 3216 in floor 3 of building SC (Siebel Center for Computer Science).

• SC/3/3216/Door2 or SC/3/3216/(1,3),(4,5) represents a door
• SC/3/3216 or SC/3/(45,12),(45,40),(65,40),(65,12) represents the room 3216

3.2 Quality of Location Information

A ubiquitous computing environment provides many different ways of sensing the
location of a mobile object (such as a person or a mobile device). Each sensing tech-
nology provides location information with different quality. We measure the quality
of location information according to three metrics:

1. Resolution, which is the region that the sensor says the mobile object is in. Reso-
lution can be expressed either as a distance or as a symbolic location, depending on
the kind of sensor. Sensors like RF badges or GPS devices give resolution in terms of
distance. For example, some GPS devices have a resolution of 50 feet, which means
that the object lies within a circle of 50 feet from the location given. Other sensors

such as card-readers give resolution in terms of a symbolic location, like a room. For
example, a card reader says that a person is somewhere inside a room.

2. Confidence, which is measured as the probability that the person is actually
within a certain area returned by the sensor. This probability is calculated based on
which sensors can detect the person in the area of interest.

3. Freshness, which is measured based on the time that has elapsed since the sensor
reading. All sensor readings have an expiry time, beyond which the reading is no
longer valid. Besides, our location model employs a temporal degradation function
(tdf) that reduces the confidence of the location information from a particular sensor
with time,

 tdfsensor-type : conf x time � conf
The tdf may degrade the confidence in a continuous or in a discrete manner with

time. Each location sensing technology (or sensor-type) in MiddleWhere is associated
with a resolution, a confidence level and a temporal degradation function.

4 The Location Service

The Location Service is the source of location information for all location-sensitive
applications. It reasons about location information from different sensors and provides
a consolidated view to all location-sensitive applications. It performs the following
tasks. (1) Fuses data from multiple sensors and resolves conflicts. (2) Answers object-
based and region-based queries. (3) Accepts subscriptions for location-based condi-
tions and notifies applications when the conditions become true. (4) Supports the
creation of spatial regions and the association of different kinds of properties with
these regions. (5) Supports the addition of static objects, along with spatial properties
of these objects. (6) Deduces a number of higher-level spatial relationship functions.

4.1 Multi-sensor location information fusion

MiddleWhere allows the use of different kinds of sensors. Different sensors give
location information in different formats (either as coordinate or as symbolic loca-
tions), and with different resolution, confidence and freshness. Multi-sensor fusion
uses data from different sensors to derive a spatial probability distribution of the loca-
tion of the person, which is the probability that the person is in different regions of
space.

4.1.1. Sensor Errors
Before we describe our algorithm, we first characterize the kinds of errors sensors

can have. There are in general two kinds of errors that sensor readings can have for a
certain region A. (1) The sensor says a person is not in A when he is actually in A. (2)
The sensor says a person is in A when he is actually not in A.

All location sensing technologies rely on the person carrying a certain device (like
a badge, a laptop or even a finger). Hence the technology only works if the person is
carrying the device. Let the probability that he is carrying the device be x. The value

of x can be assumed to be 1 for biometric authentication devices, like fingerprint
readers. For devices like badges, the value of x can be determined by observing user
behavior.

Most product specifications of location sensing technologies give the conditional
probability that the device is correctly detected when and where it is present:

P(sensor says device is in A | device is in A) = y .
In addition, location technologies also have a probability of misidentification,
i.e. P(sensor says device is in A | device is not in A) = z
Such an event occurs if a different person was in the region and the sensor incor-

rectly identified him. For example, a fingerprint recognizer can wrongly match the
fingerprint of a person to someone else.

We shall now derive an expression for the probability, p, of the first kind of error:
p = P(sensor says person is not in A | person is actually in A)
 = P(sensor says person is not in A | person is carrying device, person is in

A)*P(person is carrying device) + P(sensor says person is not in A | person is not
carrying device, person is in A)*P(person is not carrying device)

 = (1-y)*x + (1-z)*(1-x)
The probability, q, of the second kind of error is:
q = P(sensor says person is in A | person is actually not in A)
 = P(sensor says person is in A | person is carrying device, person is not in

A)*P(person is carrying device) + P(sensor says person is in A | person is not carrying
device, person is not in A)*P(person is not carrying device)

 = z*x + (y+z)*(1-x) = z + y*(1-x)
Thus, each sensor has 2 confidence values associated with it : p and q (which in

turn are derived from x, y and z). These values are used when we combine multiple
sensor readings. For example, the Ubisense UWB technology deployed in our build-
ing can detect the location of a badge within 6 inches 95% of the time. Thus, for Ubi-
sense, the area A is a circle of radius 6” centered at the location returned by Ubisense.
The various sensor probabilities are: y =0.95 and z = 0.05 * area(A)/area(U) , where
U is the area of coverage of Ubisense. This value comes about because the device
wrongly detects the person’s location with probability 0.05 and the probability that it
says that the person is in A is proportional to the area of A. x is calculated from user
studies which measure what percentage of time the user carries his badge with him.

4.1.2. Algorithm for Multi-Sensor Location Fusion
The input to our algorithm is sensor data about the location of people. This data can
either be in a coordinate format (i.e. an (x,y,z) coordinate with an error radius) or as a
symbolic location (like a room).

The first step in our algorithm is to get all the sensor data in a common format. All
locations are converted to a common coordinate format (such as the building’s) and
are expressed as minimum bounding rectangles. While approximating sensor regions
with minimum bounding rectangles decreases the accuracy of location detection, the
advantages in terms of performance and simplicity far outweigh the loss in accuracy.
Many operations like finding intersection regions, area and containment properties are
very easy and fast to perform on rectangles (as opposed to circles or arbitrary poly-
gons).

Various sensor rectangles are then combined with the intuition that different sen-
sors reinforce one another if their rectangles intersect, and are in conflict if their rec-
tangles are disjoint. In order to explain this intuition, we take the case of two different
sensor rectangles. There are 3 cases: when one rectangle contains the other, when they
intersect and when they are disjoint.

Case 1: One rectangle contains the other:
In Figure 2, sensor s1 says that the person is in the inner

rectangle A, and sensor s2 says that the person is in the outer
rectangle B. The sensors are also associated with probability
specs, p1, q1, p2 and q2 (as obtained from the previous section).

These two sensor readings partition the world into 3 differ-
ent regions, rectangle A, rectangle B and the region outside B.
Hence, we can calculate the probability that the person is actually within these regions
using the data from the two sensors. Let the event that the person is in rectangle j be
represented as personj and let the event that sensor si says he is in rectangle j be repre-
sented as si,j (where i is 1 or 2 and j is A or B). We use Bayes theorem to get the con-
ditional probability that the person is in various regions given the sensor readings.

) s , s | person P(B,2A,1B =

)personP(*)person | s , s P()P(person *)person | s , s P(

)P(person *)person | s , s P(

BBB,2A,1BBB,2A,1

BBB,2A,1

¬¬+
=

)personP(*)person | s , s P()P(person *)person | s , s P(

)P(person *)person |s P(*)person | s P(

BBB,2A,1BBB,2A,1

BBB,2BA,1

¬¬+
.(1)

(Since sensors s1 and s2 are conditionally independent given Bperson)
Now,)person P(B is the probability that the person is in the rectangle B. The value

of this depends on the movement patterns of B. In order to calculate this, we would
need to measure how much time a person spends in different regions. However, in the
absence of such data, we assume that the person is equally likely to be in any region.
In that case, the probability that the person is in rectangle B is UB/areaarea , where U
represents the whole universe under consideration and area i is the area of region i
(where i is U or B). In our setting, U is the floor-area of the entire building.

Now,)person | s P(BA,1 =
)person|personP(*)person,person | s P()person|P(person*)person,person | s P(BABAA,1BABAA,1 ¬¬+

=)/areaarea 1(*qarea/area *p BA1BA1 −+ …(2)

Similarly,)person | s P(BA,1 ¬ =

)person|personP(*)person,person | s P()person|P(person*)person,person | s P(BABAA,1BABAA,1 ¬¬¬¬+¬¬

= 1*q0 1+ = 1q …(3)

From Equations (1), (2) and (3),

s2 , B , p2

s1, A , p1

Figure 2.

) s , s | person P(B,2A,1B =

[]
[]

)/areaarea 1(*q*q /areaarea *p*)/areaarea 1(*qarea/area *p
/areaarea *p*)/areaarea 1(*qarea/area *p

UB21UB2BA1BA1

UB2BA1BA1

−+−+
−+

=
[]

[]
)area area(*q*q p*)area area(*qarea *p

p*)area area(*qarea *p

BU212AB1A1

2AB1A1

−+−+
−+

 … (4)

If only a single sensor (say sensor s2) detected the person, then, using a similar
process,

) s | person P(B,2B =
[]

[]
)area area(*q p*area

p*area

BU22B

2B

−+
 …. (5)

It can be verified that that) s , s | person P(B,2A,1B >) s | person P(B,2B if p1 >
q1 , which will be true if there is a greater chance of the sensor giving the correct read-
ing than a wrong reading. This implies that the two sensor readings reinforce each
other and increase the probability of the person being in the region.

Similarly, we calculate the probability that the person is in area A. Note that all pi’s
are net probabilities obtained after applying the temporal degradation function.

Case 2: The rectangles intersect
In Fig 2, the rectangles A and B intersect and a

new intersection rectangle is formed - C. In this
case, too, we can calculate the probability that the
person is in the various areas. We just show one of
the areas due to space constraints:

) s , s | person P(B,2A,1C =

[] [])area area(*q)area area(*p*)area area(*q)area area(*p area *p*p
area *p*p

BU2CB2AU1CA1C21

C21

−+−−+−+

 …(6)

Case 3: The rectangles are disjoint
Disjoint rectangles imply that the sensors are

giving conflicting information. This means that
one of the sensor readings is wrong and should be
discarded. We use a set of rules to decide which
the wrong reading is. An example set of rules is
shown below:
1. If either of the rectangles is moving with time, then take that reading and discard

the other one. A moving rectangle implies that the person is carrying a location
device (such as a badge) and thus has a greater chance of being valid than a sta-
tionary rectangle (which may occur if the person has left his badge in his office).

2. else, if) s | person P(B,2B <) s | person P(A,1A , then discard reading B (or vice-
versa)
In order to efficiently combine different sensor readings, we construct a lattice of

rectangles, where the lattice relationship is containment. The rectangles in the lattice
are both sensor rectangles as well as any new rectangle regions that are formed due to

sB , B , pB
sA, A , pA

C

sB , B , pB
sA, A , pA

Figure 3.

Figure 4

the intersection of two rectangles. The children of any node in the lattice are all rec-
tangles that are contained by the node.

For example, assume that there were 5 different sensors that detected the location
of a person. Their sensor rectangles (S1, S2, S3, S4, S5) are as shown in Fig 5. Be-
sides, the various rectangles create many new intersection regions (D, E, F, G). These
regions form a lattice as shown in Fig 6.

Figure 5. Many sensor rectangles

Figure 6. Lattice of rectangles

The probability associated with any node in the lattice is influenced by all sensor
rectangles that contain it, intersect it or are contained within it. For example, the prob-
ability that the person is actually within the region D (which is the intersection of
rectangles S1 and S2) is influenced by sensors s1, s2, s3 and s4. The general formula
for the probability that the person is in any region R given n sensor readings si,Ai with
probabilities pi ,i=1,…n is

=)s | person P(,R Aii

[]

[] []

)areaareaarea area(q)areaarea(*p)area area(qarea *p

)area area(qarea *p

1
R)int(Ai,AiRUi R)int(Ai,Aii

1
R)int(Ai,Ri R)int(Ai,i

1
R)int(Ai,Ri R)int(Ai,i

∏∏

∏

==

=

+−−+−+−+

−+

n

i

n

i

n

i

**

*

 …(7)
The int() function in the above equation returns the intersection of two regions. The

probabilities of all regions are finally normalized.

4.2 Queries

The Location Service handles both object-based and region-based queries. The lat-
tice obtained before gives a spatial probability distribution of the location of the per-
son. However, most location-sensitive applications just require a single value for the
location of a person and do not want to deal with a spatial probability distribution.
Hence, we need to infer a single value for the location of the person from the lattice.
To do this, we compare all the parents of the “Bottom” node (since these give the
smallest areas). If “Bottom” has just one parent, then the rectangle corresponding to
that parent is returned to the application. If there are many parents, then it means that
the various sensors report two or more disjoint rectangles. Hence, there is a conflict
and just one of the parents must be chosen and the rest discarded. To choose the most
likely parent, we use the rules for conflict resolution mentioned earlier. For example,
if S4 or one of its parent rectangles is moving with time and S5 is stationary, then S4

is chosen as the actual location of the person. S5 is removed from the lattice. The
probability that the person is in S4 is the probability associated with the node.

Applications can also make region-based queries, e.g. what is the probability that a
person is located within a certain region. To calculate this, we approximate the region
with a minimum bounding rectangle and insert this into the lattice. We find the prob-
ability of this rectangle (using Eq. 7) and return it to the application.

4.3 Region-Based Notifications

The other common kind of location-based interaction required by applications is a
notification when a person enters a certain region of interest. We have an efficient
algorithm to determine if a person entered a certain region with a certain probability.
All regions of interest required by various applications are organized into a lattice,
just as before. All sensor rectangles are inserted into the lattice as well. The probabili-
ties of all rectangles are now calculated (in a manner similar to what was shown be-
fore for rectangle D). Conflicting sensors are removed. Finally, if the probability that
the person is within a notification rectangle exceeds a certain threshold, the applica-
tion is notified.

4.4 Classifying the Probability Space

The lattice described above gives the probability that the person is in various re-
gions. Applications can get the probability and handle it, if they choose it. However,
most application developers, in our experience, do not want to deal with actual prob-
ability values. For example, it is difficult for application developers to specify differ-
ent behaviors for the application if the probability that the person is in a region is
known with a probability of 0.91, as opposed to 0.93, for instance. Hence, to make it
more convenient for application developers, we divide the probability space into
various regions. Our current implementation divides the probability space into 4 re-
gions based on the accuracy of various sensors:

(0, min(pi’s of all sensors)]: low probability
(min(pi’s of all sensors), median of all pi’s] : medium probability
(median of all pi’s , highest of all pi’s] : high probability
(highest of all pi’s, 1] : very high probability
Applications can, thus, choose to be notified if the location of the person is known

with low, medium, high or very high probability. Alternatively, an application can
explicitly ask for the probability and interpret it as it sees fit.

4.5 Symbolic Regions

Many location-sensitive applications prefer getting location information as a sym-
bolic region rather than a coordinate. For example, when somebody queries for a
person’s location, he would prefer getting the location as a room number or floor
number rather than as a coordinate In order to give location information as a sym-

bolic region, the Location Service maintains a lattice of all symbolic regions. This
includes rooms, corridors and other building structures. In addition, other symbolic
locations can be defined such as “East wing of the building” or “work region inside a
room”, etc. The lattice representation also allows incorporating privacy constraints
that specify that a user’s location can only be revealed upto a certain granularity (like
a room or a floor).

4.6 Spatial Relationship Functions

So far we have only talked about single objects and regions. However, the richness
of ubiquitous computing interactions arises from the relationships between objects
and regions. The Location Service calculates different kinds of commonly used spa-
tial relationships between objects and regions. The availability of these functions in
the Location Service simplifies the development of location sensitive applications
since application developers do not have to re-write these functions. We also associate
probabilities with spatial relations, which are derived from the probabilities of loca-
tions of the objects in the relation. There are 3 types of spatial relationships: (a) Rela-
tions between two regions. (b) Relations between an object and a region. (c) Relations
between two objects.

4.6.1. Relations between two regions
We define several relations between regions based on the Region Connection Cal-

culus (RCC) [2]. RCC is a first order theory of spatial regions. RCC-8 defines various
topological relationships: Dis-Connection (DC), External Connection (EC), Partial
Overlap (PO), Tangential Proper Part (TPP), Non-Tangential Proper Part (NTPP) and
Equality (EQ). Any two regions are related by exactly one of these relations.

Figure 7 Different relations between regions, as explained in [2]

A key relation is that of external connectedness (EC). If two regions are externally
connected, it means that it may be possible to go from one region to another. An ex-
ample of this is two rooms that are connected by a door. However two adjacent rooms
that just have a wall (with no door) in between are also externally connected. To make
this distinction, we define three additional relations:

ECFP(a,b) is true if EC(a,b) and there is a free passage to go from a to b.
ECRP(a,b) is true if EC(a,b) and there is a restricted passage to go from a to b.
ECNP(a,b) is true if EC(a,b) and there is a no passage to go from a to b.
An example of a restricted passage is a door that is normally locked and which re-

quires either a card swipe or a key to open. The various relations between regions are
useful for a number of applications such as route-finding applications.

Evaluating the relation between 2 regions is just O(1) given the vertices of the two
regions. The vertices of all the rooms and corridors in the building are obtained from
the blueprints of the building. The vertices of application defined regions are given by
the application. Finally, the relations ECFP, ECRP and ECNP are evaluated by check-
ing if there is a door or an obstruction like a wall between the regions. The Location
Service reasons further about these relations using XSB Prolog [3].

Another relation between regions is distance. Two kinds of distance measures are
used: Euclidean, which is the shortest straight line distance between the centers of the
regions, and path-distance, which is the length of a path from the center of one region
to the center of the other region.

4.6.2. Relations between an object and a region
MiddleWhere defines various relations between an object and a region. These rela-

tions are probabilistic if the location of the object is only known with some probabil-
ity. Some of the main relations defined are: (a) Containment: whether an object is
within a certain region. (b) Usage: Usage Regions are defined for certain objects (like
displays or tables) such that if a person has to use these objects for some purpose, he
has to be within the usage region of the object. (c) Distance: the distance from an
object to a region (Euclidean or path-based).

4.6.3. Relations between two objects
The main relations between two objects are (a) Proximity: whether the two objects

are closer than a pre-defined distance. (b) Co-location: whether the two objects are
located in the same symbolic region (of a specified granularity such as room, floor or
building). (c) Distance: the Euclidean or path-based distance between the two objects.

5 Spatial Database

MiddleWhere uses a spatial database for modeling the physical space and storing
location information from various sensors. The spatial database also supports opera-
tions on geometric data types such as intersection, union, disjoint and so on. These
operations are used by the Location Service for reasoning about spatial relationships
between objects and regions.

5.1 Modeling the Physical Space

The physical space consists of objects and regions. Objects are represented as points,
lines or polygons while regions are represented using minimum bounding rectangles
(MBR). An MBR of a region is a rectangle of minimum area that fully encloses the
region. This approximation enables ease of representation and reasoning [4]. The
concept of minimum bounding rectangles is used heavily by the spatial data mining
community [5]. Minimum bounding rectangles provide approximate boundaries to
objects of interest to enable efficient processing of operations such as checking for
certain spatial characteristics, verifying proximity of an object to another object and

so on. Once a certain condition is satisfied by a MBR, more accurate processing of the
operation is performed taking the actual region boundaries. Figure 8 and Table 1
show the graphical and spatial representation of our floor.

�
�
�
�
�
��
�
		

�
�
	

�
�
�
�
�

�
�
�
		

�
�
	

�
	

�
��
	�
�
�
�
�
��
�
		

�
�
	

Figure 8. Graphical Layout of floor

Table 1. Database table representing the floor

Object
Identifier

Glob
Prefix

Object
Type

Geometry
Type

Points

Floor3 CS Floor Polygon (0, 0), (0,500), (500, 100), (0,100)
3105 CS/Floor3 Room Polygon (330, 0), (350, 0), (350,30), (330,30)
NetLab CS/Floor3 Room Polygon (360, 0), (380,0), (380, 30), (360,30)
HCILab CS/Floor3 Room Polygon …
LabCorridor CS/Floor3 Corridor Polygon (310,0), (330,0), (330,30), (310,30)

The ObjectIdentifier is a unique name in the name space of GlobPrefix. The Glob-
Prefix field specifies the identity of the enclosing space for an object. For example,
NetLab is located in Floor3 of the CS department. GlobPrefix and ObjectIdentifier
make up the combined key for the spatial table. The ObjectType field assigns seman-
tic information to the object such as Room, Corridor, Floor, chair, table, etc. The
GeometryType field specifies the geometry type used to represent the object. Though
we use bounding rectangles to represent objects in our model, certain entities such as
non-enclosing walls, light switches, etc are more conveniently represented with other
geometry types such as lines and points. Finally, the Points field represents a se-
quence of points describing the geometry. In addition to the information mentioned
above, the database also stores spatial properties of objects, like location, dimension,
orientation, etc. Furthermore, modeling the physical space allows SQL queries on
objects and regions. An example query is ‘Where is the nearest region that has power
outlets and high Bluetooth signal?’

5.2 Representing Sensor Information

Sensor information is stored in a separate table in the spatial database. Sensor infor-
mation from various sensors is converted, by sensor adapters, to a common sensor
schema before inserting it in the sensor information table. The table contains temporal

information indicating the time when the sensor reading was obtained. The sensor
information table schema and some sample sensor readings are shown in Table 2.

Table 2. Sensor Information Table Schema and sample sensor readings

Sensor
Id

Glob Prefix Sensor
Type

MObject
Id

Obj
Location

Detection
Radius

Detection
Time

RF-12 SC/Floor3/3105 RF tom-pda (5, 22,9) 30 11:52:35
Ubi-18 SC/Floor3/3102 Ubisense ralph-bat (41,3,9) 6 11:51:22

We maintain a separate table for storing information about each sensor. This table
contains the confidence with which a sensor can detect the location of an object and
the time-to-live information of the sensor data. Each sensor is associated with a confi-
dence value that measures the uncertainty that is associated with a sensor’s reading.
This confidence value is found through empirical means. The time-to-live information
indicates the time before a certain sensor reading expires. For example, a card reader
has a time-to-live value of 10 seconds. A card reader location value that is older than
10 seconds is considered stale. The sensor table schema and sample data are shown
below.

SensorId Confidence(%) Time-to-live(s)
RF-12 72 60
Ubisense-18 93 3

5.3 Location Triggers

Location triggers are events that are generated when a certain spatial condition is
satisfied. These conditions include mobile object entering a certain region, mobile
object at a certain distance from another object and so on. MiddleWhere uses the
spatial database to generate location triggers. Applications can subscribe to receive
triggers by specifying spatial conditions. MiddleWhere interprets these conditions
into appropriate database triggers and creates these triggers in the database. When a
condition is satisfied, the spatial database generates the corresponding trigger. Mid-
dleWhere maintains an internal list of subscribers and trigger identifiers and when it
receives a trigger it redirects it to the subscribed application.

6 Location Sensors and Adapters

In order to facilitate plug-and-play support for new location technologies, at the
lowest layer of MiddleWhere (Figure 1), we define an object called a location
adapter. The location adapter is a CORBA client wrapper for the specific location
technology at hand. The adapter communicates natively to the interface exposed by
the location technology, and acts as a device driver that allows the location sensor to
work with MiddleWhere seamlessly.

Upon installing a new location technology, a calibration process needs to be under-
taken. This process involves using the characteristics and specifications of the loca-
tion sensor to convert the location readings to symbolic and/or coordinate location
information that matches the location model and coordinate system that MiddleWhere

uses. In addition, the two confidence values p and q (as mentioned in Section 4) are
estimated. In essence, the adapter translates the location readings into a GLOB that is
fed into MiddleWhere through the provider interface.

Every adapter has an adapter ID and an adapter type. The adapter ID uniquely
identifies a particular adapter. The adapter type classifies adapter objects based on the
location technology they wrap. Different instances of the same adapter type can be
created to wrap multiple sensors of the same type. For instance, we are running RF
badge base stations in three different locations. In each location, an RF badge adapter
is instantiated with the correct information.

At this time, we implemented adapters for four different location technologies:

1. Ubisense™. Ubisense consists of tags and base stations that utilize Ultra WideBand
technology. The base stations are able to pinpoint the location of a tag within 6
inches 95% of the time. As described in Section 4, we estimate the confidence val-
ues of Ubiense as follows. Area A is a circle of radius 6” centered at the location
returned by Ubisense, where y = 0.95, and z = 0.05 * area(A)/area(U), where U is
the area of coverage of Ubisense.

2. RFID Badges [6]. These are RF-based active badges that can transmit identification
information. This identification information is in the form of a 32 byte string. This
string can be written into the badge. The transmitted ID is received by base stations
that can be positioned in different locations. The base stations can detect badges
within a range of approx. 15 ft. This system cannot give exact coordinates of the
badge; instead, it is capable of capturing the IDs of the badges in its vicinity. In our
experiments, we found that different obstacles can weaken the signal significantly,
thus, the best set up for the RF badges is to define an area of interest, A, and set up
a base station in the center of A. No error rates are documented for this device, but
we found out that there are good chances that it is not picked up due to the system’s
inaccuracy. So we set y = 0.75, and z = 0.25 * area(A)/area(U), where U is the area
of coverage as documented in RF badges hardware specs.

3. Fingerprint devices and other biometric logins. In many scenarios, users of our
system are required to authenticate to access some data or perform some tasks.
Most biometric authentication technologies require physical presence. We exploit
this information to get short-lived but relatively accurate readings of a person’s lo-
cation. Unlike the previous technologies, these devices do not transmit continuous
signals when users are in the vicinity. In addition, we assume that these devices are
secure, i.e., it is very unlikely that a fingerprint device would detect a positive fin-
gerprint match of a user without that user being there physically! Once a user is
identified, there is a good possibility that the user may leave the vicinity. In many
cases, users are encouraged to manually logout for security reasons. However, in
reality, people often forget to logout before leaving the vicinity. For this reason, a
biometric authentication adapter provides two different location readings to Mid-
dleWhere: a short-term reading, and a longer-term reading. For short-term reading,
we set the expiration time to 30 seconds, define a small area (in our case, a circle
centered at the device position with a radius of 2 feet), set y = 0.99, z=0.01 and x=1
(because of our assumptions). In the second reading, we set the expiration time to T
minutes, where T can be estimated based on user studies for finding how long a
person is likely to stay in the room after authenticating. For our purposes we found

that T = 15 minutes is reasonable, given the fact that confidence will degrade with
time anyway. In this reading, the area is set to the whole room, and z is set to the
probability of a user leaving the room before T and without manual logout. If a user
elects to logout manually, then this is a clear indication that the user is in the room
now, but he is leaving soon. So, the adapter feeds the system with a short-term loca-
tion reading, where expiration time is 15 seconds, radius is 2 feet, y = 0.99, z=0.01,
and x=1. The adapter also forces all location information relating to that user and
obtained from the same device to expire immediately.

4. GPS. The GPS adapter works as follows. The GPS device tries to achieve a satellite
lock. If successful, the adapter should be able to translate longitude, latitude, and
altitude information into a coordinate location that matches MiddleWhere’s coordi-
nate system. Unlike the above technologies, GPS can give an estimation of its accu-
racy; therefore, the adapter uses this value for calculating the confidence values. If
the GPS receiver estimates an accuracy of 15 feet, we set area A to a sphere with a
radius of 15 feet. We can set y=0.99 and z=0.01 (assuming that the accuracy esti-
mate of the GPS is correct), however, x, will still equal the probability of a person
not carrying his GPS device.

7 Implementation

In this section, we provide a brief description of MiddleWhere implementation. We
use CORBA to enable distributed communication between MiddleWhere compo-
nents, Applications, and adapters (that wrap the location technologies). To implement
the spatial database, we use PostGIS with the PostgreSQL object-relational database.
PostGIS adds support for geographic objects and provide basic spatial support.

While MiddleWhere can run as a standalone service in any distributed computing
environment, our objective was to develop a general-purpose location middleware
that can be integrated into Gaia. Gaia [7] is a generic computational environment that
integrates physical spaces and their ubiquitous computing devices into a programma-
ble computing and communication system. Gaia provides the infrastructure and core
services necessary for constructing ubiquitous computing environments. We imple-
ment MiddleWhere as an extended Gaia service. Gaia applications can discover the
location service component of MiddleWhere by querying the Gaia Space Repository
service, which provides a list of available services. Gaia applications can then talk
directly to the location service. To access location information, we provide push and
pull models. An application can choose to query the location service for location
information for a particular object or person, or it can define one or more location
triggers for regions of interest, where it is notified when an object of interest is de-
tected inside that region. Additionally, applications can choose to query about confi-
dence levels. We integrated four different location technologies in the system (as
mentioned in Section 6), at this time, the location sensors cover four different rooms,
that includes a lab, a conference room, and two offices.

8 Example Applications

To demonstrate our system, we have developed several location-aware applications.
We briefly mention some of them here:

1. Follow Me Application. In this application, we define a user session as a set of
applications and files that a user interacts with. The session also includes state infor-
mation and customization options chosen by the user. If a user moves out of the vicin-
ity of the display he is using, the application will automatically suspend the session.
When a user is detected in the vicinity of any other display or workstation, the session
is automatically migrated and resumed at that machine. In effect, users can resume
their work anywhere and anytime without having to remember to save the latest
changes or to worry about copying their data to a removable disk. To implement this
application, we create a “user proxy,” which manages the sessions of a certain user.
The proxy then uses MiddleWhere to discover the location of the user. If the location
of the user is obtained, the proxy queries the Location Service for nearby displays or
workstations that are suitable for resuming the session; if found, the session can be
resumed immediately on the new display. The user can customize the behavior of the
Follow Me application by changing the settings in the user proxy to accommodate
privacy preferences.

2. Anywhere Instant Messaging. This application allows a user to receive instant
messages from a designated list of “buddies” on whichever display is closest to him.
A user can customize the application by choosing to block particular users at certain
locations, or by configuring the system to display private messages only if the loca-
tion accuracy is ‘high’ and other users are not in the immediate vicinity!

3. Location-Based Notifications. In this application, notifications are sent to people
located in a particular geographical boundary (which could be a region or a sphere,
etc.) The notification may be a message like “The store is closing in five minutes,” for
example. This application is implemented by setting up location triggers in the target
area, and maintaining a list of users in the region.

4. Vocal Personnel Locator: This application combines voice recognition with lo-
cation-awareness. A user asks the computer to locate a person or an object using a
speech interface. The application then queries the spatial database for the required
info, and replies verbally.

9 Evaluation

We have evaluated the performance of MiddleWhere on a 4 CPU 3.06 GHz ma-
chine with 3.6 GB RAM. The spatial database used was PostGIS 0.8.1 with Post-
greSQL 7.3.4 and the communication middleware was Orbacus. Figure 9 shows the
time taken for a trigger to be notified by MiddleWhere. The graph shows the trigger
response times for 10 different updates to the location service. The various curves
indicate the number of trigger notifications programmed into the location service. We
expected the response time to increase with the number of programmed triggers but
we found that the response time was almost independent of it. This indicates that
MiddleWhere scales well with number of programmed triggers. It can be noticed from

the figure that the first
update requires a higher
trigger response time than
subsequent updates. This
is due to the initial setup
time taken by Middle-
Where.

10 Related Work

Location-aware comput-
ing has been an active
area of research. Most
projects on location-
tracking focus on accu-
rately reasoning an ob-
ject’s location or sensor fusion. In our work, we also focus on designing a middleware
that caters to the requirements of location-aware applications.

The Location Stack [8] defines a layered modeled for fusing location information
from multiple sensors and reasoning about an object’s location. It, however, does not
incorporate a spatial model of the physical world. It does not support representations
of immobile objects and so does not support spatial reasoning relative to stationary
entities such as rooms, corridors and so on.

The NEXUS project [9] uses a spatial database to model the physical world. It
supports toplogical and topographic models similar to the symbolic and coordinate
systems supported by our system. The focus of NEXUS is on modeling the physical
world – it does not address location determination issues. It does not support multi-
sensor probabilistic fusion of location information and reasoning with a spatial model
as supported by MiddleWhere.

The Aura Space Service [10] provides spatial models for context-aware applica-
tions. It combines coordinate and hierarchical location models into a single hybrid
model, which supports spatial queries. MiddleWhere uses the hybrid location model
introduced by the Aura Space Service. The focus of the Aura Space Service is only on
modeling the physical space and supporting spatial queries. It does not address loca-
tion inferencing issues and does not provide a framework for spatial reasoning like
MiddleWhere.

Sematic Spaces [11] has developed spatial models to represent rooms, buildings
and other objects. It uses a topological model for representing relationships among
various objects. The topological model is similar to the symbolic model supported by
MiddleWhere. The project does not integrate the spatial model with a location system
and supports no probabilistic reasoning techniques like MiddleWhere. Further, the
spatial model of Semantic Spaces does not seem to support a coordinate system like
MiddleWhere.

Location-based Spatial Queries [12] project addresses ways of indexing and cach-
ing spatial data for location-based queries. The focus of this project is on developing

Figure 9: Trigger Response Time

database techniques for queries with location constraints. It does not support sensor
fusion and reasoning.

11 Conclusion

We presented the design and implementation of MiddleWhere, a distributed mid-
dleware system that fuses various location technologies, resolves conflicts, and com-
bines multi-sensor readings to get more accurate location readings for people and
objects. The system facilitates the separation between applications and location tech-
nologies to enable dynamic add-on of new technologies, without changing existing
applications. We demonstrated the potential of the system by integrating four differ-
ent location technologies, and developing several location-aware applications.

In the future, we plan to incorporate more devices and deploy the middleware
widely. We also plan to conduct user studies to get accurate values of various parame-
ters of our system like the probability of carrying location devices and the temporal
degradation function. These probability values can then be used by the middleware
and location-aware applications to improve their reliability and accuracy.

12 References

[1] UbiSense, "Local position system and sentient computing." http://www.ubisense.net/.
[2] A. G. Cohn, B. Bennett, J. M. Gooday, and N. Gotts, "RCC: a calculus for Region based Quali-

tative Spatial Reasoning," presented at GeoInformatica, 1997.
[3] "XSB Prolog." http://xsb.sourceforge.net.
[4] A. Guttman, "R-trees: a dynamic index structure for spatial searching," presented at 1984 ACM

SIGMOD international conference on Management of data, 1984.
[5] K. Koperski, J. Adhikary, and J. Han, "Spatial Data Mining: Progress and Challenges," pre-

sented at SIGMOD'96 Workshop on Research Issues on Data Mining and Knowledge Discov-
ery, Montreal, Canada, 1996.

[6] RFId, "Radio Frequency Identification, (RFID)," http://www.aimglobal.org/technologies/rfid/.
[7] M. Román, C. K. Hess, R. Cerqueira, A. Ranganathan, R. H. Campbell, and K. Nahrstedt,

"Gaia: A Middleware Infrastructure to Enable Active Spaces," IEEE Pervasive Computing (ac-
cepted), 2002.

[8] D. Graumann, W. Lara, J. Hightower, and G. Borriello, "Real-world implementation of the
Location Stack: The Universal Location Framework," presented at 5th IEEE Workshop on Mo-
bile Computing Systems & Applications, 2003.

[9] O. Lehmann, M. Bauer, C. Becker, and D. Nicklas, "From Home to World - Supporting Con-
text-aware Applications through World Models," presented at the Second IEEE International
Conference on Pervasive Computing and Communications, Orlando, FL, 2004.

[10] C. Jiang and P. Steenkiste, "A hybrid location model with a computable location identifier for
ubiquitous computing," presented at Lecture Notes in Computer Science, 2498, UbiComp, 2002.

[11] B. Brumitt and S. Shafer, "Topological World Modeling Using Semantic Spaces," presented at
Workshop on Location Modeling for Ubiquitous, UbiCom, 2001.

[12] B. Zheng, W.-C. Lee, and D. Lee, "Spatial Index on Air," presented at IEEE International
Conference on Pervasive Computing and Communications (PerCom'03), 2003.

