
Towards a Pervasive Computing Benchmark1

Anand Ranganathan, Jalal Al-Muhtadi, Jacob Biehl, Brian Ziebart, Roy H. Campbell, Brian Bailey

University of Illinois at Urbana-Champaign

{ranganat, almuhtad, jtbiehl, bziebart, rhc, bpbailey}@uiuc.edu

1 This research is supported by grants from the National Science Foundation, NSF CCR 0086094 ITR and NSF 99-72884 EQ

Abstract
Pervasive computing allows the coupling of the physi-

cal world to the information world, and provides a wealth

of ubiquitous services and applications that allow users,

machines, data, applications, and physical spaces to in-

teract seamlessly with one another. In this paper, we pro-

pose a benchmark for evaluating pervasive computing

environments. These proposed metrics facilitate the as-

sessment and evaluation of different aspects of pervasive

computing and its support for a wide variety of tasks.

1. Introduction
Pervasive computing is a new research field that encom-

passes a variety of elements from different disciplines

including distributed systems, sensor networks, mobile

computing, databases, AI, HCI, security, and networking.

These technologies converge to deliver ubiquitous access

to data and services and boost productivity. While there

are standard metrics for evaluating more traditional fields

like HCI [5, 6], system performance [7, 8], and software

engineering [9], there are no standard metrics for evaluat-

ing different kinds of pervasive systems [1-4]. Pervasive

computing introduces new ways of interacting with and

using computers. Hence, new schemes for assessing and

evaluating pervasive computing are required to guide the

design and implementation of such systems. In this paper,

we identify a number of metrics for the purpose of evalu-

ating pervasive computing environments. For evaluation

purposes, any pervasive computing framework can be

divided roughly into three layers: system support, applica-

tion programming support and end-user interface. Respec-

tively, the metrics we identify in this paper can be catego-

rized into three categories: system, programmability and

usability metrics. Some of these metrics are unique and

applicable only in pervasive computing environments;

while others are based on metrics identified in other areas,

which we extend and adopt for our purpose. The metrics

identified in this paper are not exhaustive. However, we

believe that they present suitable guidelines for steering

the development of new systems and measuring existing

ones.

Traditional benchmarks often measure system per-

formance by observing performance on standardized task

sets. Different systems are compared by how well they

deal with these task sets. Because pervasive computing is

in its infancy, there is no widely accepted notion of the

task sets that would form a benchmark. Moreover, differ-

ent pervasive computing environments have been built for

supporting different kinds of tasks. Hence, it becomes

difficult to compare them. To overcome this problem, we

identify four broad classes of task, which many environ-

ments would support one or more of these tasks. We try to

measure how well a pervasive computing environment

supports these tasks in terms of usability, system and pro-

grammability metrics. The broad classes of tasks that

drive our benchmark are: (1) Presentation tasks: involving

displaying and navigating information (such as slide-

shows or web pages) (2) Notification/Trigger-based tasks:

involving sending notifications to users or performing

actions that are triggered by some condition. (3) Collabo-

ration tasks: involving multiple users working together to

achieve a common goal. (4) Information Finding tasks:

involving finding information about users and resources.

In Section 2, we evaluate the system support for perva-

sive computing in terms of context-sensitivity, security

and discovery metrics. Section 3 describes configurability

and programmability metrics. Section 4 describes usabil-

ity metrics. Section 5 concludes the paper.

2. System Metrics
Our metrics for evaluating the system support for per-

vasive computing cover the areas of context sensitivity,

security and discovery. We did not include some of the

more traditional metrics involving network, operating

system or database performance since there are already

well-established metrics for evaluating these aspects.

2.1 Context-Sensitivity Metrics
A key aspect of pervasive computing is sensing the

current context and user goals and then using this infor-

mation while helping users perform various tasks. Thus,

context-sensing and context-based adaptation form a key

dimension while evaluating pervasive environments. We

split the evaluation of context-sensitivity into two parts:

(1) Evaluating the quality of sensed or derived context

information. (2) Evaluating the use of context information

for enhancing the four different kinds of tasks.

In order to evaluate context-sensitivity, we define a

taxonomy of the different kinds of contexts. Some of

these contexts are sensed directly, while others are in-

ferred from other sensed contexts. Our taxonomy consists

Proceedings of the 3rd Int’l Conf. on Pervasive Computing and Communications Workshops (PerCom 2005 Workshops)

0-7695-2300-5/05 $20.00 © 2005 IEEE

of: Location, time, environmental contexts (temperature,

light, sound level), informational contexts (stock quotes,

sports scores), user contexts (gaze, orientation, health,

mood, schedule, activity), group contexts (group activity,

social relationships and networks, other people in a

room), application contexts (email received, websites vis-

ited, previous files opened), system contexts (network

traffic, status of printers), and physical object contexts

(position or orientation of chairs and tables, properties of

objects such as temperature and size). The quality of the

above contexts can be evaluated using one or more of the

following four metrics:

1. Confidence – expressed as a probability that the context

has been sensed or deduced correctly

2. Accuracy – expressed as an error percentage of the

sensed or inferred contexts.

3. Freshness – measured as the average time between

readings of a certain kind of context.

4. Resolution – the area within which location informa-

tion can be narrowed down to (room-level, building-level,

etc.)

Context information can be used, proactively or reac-

tively, for enhancing different kinds of tasks. We need

metrics for evaluating how well context information is

used. This involves comparing the same task in the perva-

sive environment when it uses and does not use context

information. For example, a presentation application can

be manually configured by the user for the current context

(such as number and location of attendees, kind of presen-

tation, displays available, etc.), or the application may

configure itself automatically. The metric we propose for

evaluating context-enhanced presentation tasks is the re-

duction in the number of configuration actions the user

has to take. Similarly, context can enhance an informa-

tion-finding task by automatically augmenting the query

or filtering the results based on the location of the user or

his current activity. Context can also be used to adapt the

interface based on the kind of information being re-

quested. The metric in this case is the reduction in the

number of constraints the user has to specify in his query

or the reduction in the number of actions the user has to

take to get the desired information. Table 1 evaluates how

context is used for enhancing different kinds of tasks.

Besides the above metrics, there are other aspects of

context sensitivity that are more difficult to quantify and

evaluate. For example, the overhead in deploying sensors

for sensing contexts is difficult to quantify. We are still

investigating ways of incorporating such metrics.

Researchers have recognized the fact that context in-

formation can have varying quality. For example, [10-14]

allow location and context information to be associated

with quality metrics, such as freshness, accuracy and con-

fidence. While the quality of context information is an

important metric, it is equally important to evaluate

whether context information is being used to enhance

various kinds of tasks. Hence, in our metrics, we try to

cover both the quality of context as well as it’s usage in

various kinds of tasks.
Table 1. Evaluating context-based adaptation of tasks

Kind of Task Context-Enhancement Metric

Presentation

Task

Reduction in number of configuration actions

that user has to take to configure environment

in a context sensitive manner

Trigger-

based/Notifica

tion Task

Reduction in number of times user was dis-

turbed or annoyed by a proactive action taken

by the system or by a notification. This is

measured based on user feedback.

Collaborative

Task

Reduction in number of configuration actions.

Also, enhancement of seamlessness of interac-

tions; ease of information retrieval, versioning

and archiving processes measured by user

feedback.

Information-

Finding Task

Reduction in number of steps that user has to

take to get some information or the number of

parameters that user has to enter in his query.

2.2 Security Metrics
Addressing security and privacy issues in pervasive

computing is vital to the real-world deployment of the

technology. The security metrics we identify here try to

gauge the ability of the security services to handle the

ubiquity, context sensitivity, and rapid evolvement of the

pervasive environment. We identify the following met-

rics:

1. Expressiveness of Security Policies: We measure the

expressiveness of a security policy by its ability to incor-

porate the following in the policy’s rules. 1) Support for

mandatory and discretionary rules. Typical pervasive

computing environments are composed of a tapestry of

public spaces, devices, and resources, as well as personal

devices and gadgets. Therefore, it is essential to be able to

support mandatory policies set by the space administra-

tors, as well as accommodating policies defined by users

for their personal devices. 2) Context sensitivity. Security

rules of a pervasive computing environment may vary

according to the context of the space. Hence, the security

policy language should be able to incorporate rich context

information. 3) Uncertainty handling. Often, context in-

formation is not precise. Policies should be expressive

enough to define how to act under imprecise or incom-

plete context information. 4) Conflict resolution. Expres-

sive policies have the potential to conflict with each other,

particularly when different users are allowed to set poli-

cies. Some mechanism for handling conflicts is necessary.

2. User control over private information: The physical

outreach of pervasive computing makes preserving users’

privacy a difficult task. Mechanisms are needed to give

users control over their private information and how and

when it can be disclosed. Cooper et al. [15] identify three

kinds of privacy: content, identity, and location. Content

Proceedings of the 3rd Int’l Conf. on Pervasive Computing and Communications Workshops (PerCom 2005 Workshops)

0-7695-2300-5/05 $20.00 © 2005 IEEE

privacy is concerned with keeping data or content private.

Identity privacy is concerned with hiding the identity of

the user. Location privacy is concerned with hiding the

location of the user. Our proposed metric takes into ac-

count the three different kinds of privacy (Table 2).

3. Unobtrusiveness of security mechanisms: Pervasive

computing attempts to provide a seamless user-centric

environment, where users no longer need to exert much of

their attention to computing machinery. Therefore, the

security subsystem should provide mechanisms that allow

security services, like authentication for instance, to be-

come transparent to some level, blending into the back-

ground without distracting users too much.

2.3 Discovery Metrics
An important facet of any large scale distributed sys-

tem is discovery, or the ability to find resources that meet

certain requirements. Different discovery protocols have

been proposed and used such as CORBA’s Trading Ser-

vice, Jini’s Lookup Service, INS, Salutation, etc. Besides,

different pervasive computing environments have their

own methods for service and device discovery. Our met-

rics for evaluating discovery protocols for pervasive com-

puting environments consist of the following elements:

1. Precision and Recall. Precision is defined as the per-

centage of correct hits among all the answers returned.

Recall is defined as the percentage of correct hits returned

out of all the correct hits that exist in the environment.

2. Context-Sensitivity. Does the discovery protocol take

into account the context of the requestor, the service or of

the environment while matching requests to provide con-

textually appropriate results?

3. Semantics. Is the semantics of the query used, or is

query-answering based solely on syntax (e.g. keywords)?

4. Scalability. Does the protocol scale for large-scale

environments with a large variety of services and devices?

This is measured based on the number of requests and

advertisements that the system can handle per unit time.

3. Configurability and Programmability

Metrics
An important metric for evaluating pervasive comput-

ing environments is the ease with which new applications

and services can be developed and existing applications

and services can be configured. We propose metrics that

differentiate between end-users and developers. Develop-

ers have programming expertise, enabling them to create

or modify applications and services. End-users normally

lack these abilities and prefer using simple graphical in-

terfaces to configure applications and services.

3.1 Application Properties
To measure the programmability and configurability of

pervasive computing environments, we identified proper-

ties of applications in these environments that distinguish

them from traditional desktop applications. These proper-

ties include multi-device partitioning, mobility, compos-

ability, context-sensitivity and automation. Our bench-

mark measures how easy it is for developers to program

and for end-users to configure these properties for an ap-

plication that performs one of the four broad classes of

tasks described earlier (i.e. presentation, notification, col-

laboration, and information finding tasks).

Multi-device adaptation and partitioning: In a perva-

sive computing environment with many computing de-

vices for each user, confining application interaction to a

single device is overly restrictive. Applications that span

multiple devices allow users access to a wider scope of

interaction with the environment. An example of multi-

device partitioning is allowing a user to control a slide-

show on a wall-mounted plasma screen using a handheld

device. Additionally, applications may need to adapt in

order to run on a different device. We evaluate the effort

required to support an application on a different device.

Application mobility: Many pervasive environments

support mobile applications that can move with the user.

Some of the issues in application mobility are maintaining

consistent state and adapting to different devices. A re-

lated aspect is replicating an application across multiple

devices, which is useful in collaboration applications.

Application and Service Composition: Composition al-

lows components to be used in a variety of new tasks and

also increases the reusability. A number of different ap-

proaches have been suggested for composition. These

approaches can be evaluated in terms of the kinds of com-

positions they allow – sequential, parallel, conditional,

recursive, manual, automatic, etc.

Context-Sensitivity: Applications may need to behave

differently depending on the current context of the envi-

ronment. Different infrastructures allow developers and

end users to specify context-sensitive application behavior

in different manners and through different languages. Our

metric for evaluating context-sensitivity is the power and

expressivity of the language used for specifying context.

Automation: Many pervasive systems try to configure

applications and services based on users’ preferences

automatically. Common approaches include learning and

user-specified macros or scripts describing what actions

should be performed automatically. If learning is used,

then the metric is the percentage of times correct deci-

sions were made with regard to automation. If the user

can use tools or scripts to specify automation, then the

metric is based on the ease of use of the tool. Another

metric is whether automation can be learned or specified

in a context-sensitive manner.

3.2 Measurements
Pervasive environments generally provide application

developers with libraries, frameworks or toolkits for sup-

porting the above-mentioned properties in their applica-

tions. We measure their effectiveness using the traditional

Proceedings of the 3rd Int’l Conf. on Pervasive Computing and Communications Workshops (PerCom 2005 Workshops)

0-7695-2300-5/05 $20.00 © 2005 IEEE

metrics of man-hours and lines of code. Our programming

metrics include the number of lines of code and man-

hours that are required to create a new application per-

forming one of the broad task classes. It then measures

the number of additional lines of code and man-hours

required for supporting a certain property for this new

application. Alternatively, if GUI-based tools are avail-

able for developers, lines of code can be replaced by ac-

tions required on the GUI. End-users normally use GUIs

or simple scripts to specify the desired properties. We

evaluate the support offered by a pervasive environment

to an end-user based on the level of skill required to con-

figure the application, using the following scale: (1) Sim-

ple end user GUI. (2) Experienced user GUI. (3) End user

command line. (4) Scripting language. (5) Advanced pro-

gramming or source-code editing. Table 2 has a summary

of our programmability metrics and also suggests how

they can be measured.

4. Human Usability Metrics
In designing usable pervasive environments developers

must consider both old and new usability challenges. As

in traditional usability design, attention to user's perform-

ance (time to complete task), rate of error, recoverability

from error and satisfaction are key factors in the assess-

ment a system's usability. While these metrics and others

[5] are still valid, by themselves, they fail to provide a

complete assessment of a pervasive environment's usabil-

ity. In these environments, the traditional interaction

metaphor of one user to one computer is broken. Users

are now interacting with multiple technologies while si-

multaneously collaborating with their co-located peers.

They are moving about the environment, constantly refo-

cusing attention while manipulating and relocating data

across devices. New interaction metaphors present new

challenges for measuring the usability of the system.

Through observations of users collaborating in our Active

Space we propose the following metrics for evaluating the

usability of pervasive environments:

Head turns: We found head turns to be strongly corre-

lated to how much a user’s attention is divided across the

workspace. Changing the focus of attention can be physi-

cally and mentally taxing and can quickly frustrate a user.

The number of head turns can be measured easily and can

help to provide designers with an understanding of an

environment's ability to effectively interact with users.

Physical movement: Physical movement that is not a

direct part of a user's task is superfluous, time consuming

and causes interruption in users' thought process. The

nature of pervasive computing is to have computing re-

sources everywhere; excessive physical movement is con-

tradictory to this model. Measuring the time a user

spends moving in the space auxiliary to their main task

helps designers assess the effectiveness of the system.

A priori user knowledge: One of the essential goals of

pervasive environments is to provide interaction tech-

niques that require little to no prior knowledge from the

user. The best interfaces are those in which world knowl-

edge provides enough understanding for a user to interact

with the system [6]. Measuring the number of facts that

the user has to know in order to perform a task is valuable

in assessing the difficulty and learnability of the system’s

interaction techniques. For example, consider speech

based interfaces where a user must first learn the system’s

vocabulary before being able to use it. Here the compre-

hensiveness of the vocabulary can be measured as a quan-

tifiable number of facts required for successful interac-

tion.

These metrics are not intended to be comprehensive,

but rather complement traditional usability metrics to cre-

ate a stronger, more extensive assessment of pervasive

usability. Traditional metrics such as error rate, task com-

pletion time, and subjective satisfaction are still valid in

these environments because they measure human charac-

teristics which, with respect to traditional interfaces, are

just as relevant to pervasive environments.

5. Conclusion and Discussion
In this paper we presented various metrics for evaluat-

ing pervasive computing environments. We derived these

metrics from the result of four years of building and im-

proving our pervasive computing system [4] and from

performing various usability studies [16]. As an example

of the kinds of results produced by our proposed bench-

mark, we evaluated our pervasive system using some of

the metrics in our benchmark. The results of our evalua-

tion are in [17]. We have also subsequently improved

some features of our environment based on evaluation

results. We believe that the benchmark will be broadly

applicable to different environments because the broad

goals of pervasive computing are common across most

environments. While the list of metrics we identified are

not exhaustive, we believe that they contribute towards

clarifying a lot of the ambiguity that exist in evaluating

existing systems, and give a good sense of direction for

new pervasive computing infrastructures.

The classes of tasks we chose to be a part of our

benchmark are meant to be a representative set of tasks in

pervasive environments. We recognize that all pervasive

environments may not support all kinds of tasks and that

some environments may support other kinds of tasks as

well. However, we believe that identifying such common

tasks and evaluating pervasive environments based on

these tasks is necessary in order to compare different en-

vironments. We also realize that some metrics are less

precise and more difficult to measure than others. We

hope that as we continue to use these metrics, these limi-

tations can be overcome.

Proceedings of the 3rd Int’l Conf. on Pervasive Computing and Communications Workshops (PerCom 2005 Workshops)

0-7695-2300-5/05 $20.00 © 2005 IEEE

We invite feedback from other researchers in terms of

important metrics that may be missing in our benchmark

as well as alternative ways of measuring them. We also

invite other researchers to evaluate their environments

using our proposed benchmark to test the broad applica-

bility of the benchmark. We are also working on expand-

ing our benchmark to include other aspects such as fault-

tolerance.
Table 2. Summary of Security, Programmability and Usability metrics and their Units of Measurement

Metrics Unit

Expressiveness of the security policy We identified 4 different features for security policy expressiveness. We measure

this metric by using a value of 0-4, representing the number of features supported.

User control over private information 0-3, where 0 = no control provided. 1 = system provides control over the disclosure

of one kind of information (content, location, or identity), 2 = system provides con-

trol over two kinds of information. 3 = system provides control over all three kinds

of information.

S
ec

u
ri

ty

Unobtrusiveness of security mechanisms % of time used for interacting with the security subsystem (e.g. authentication) aux-

iliary to the main task

New Application Man Hours and/or lines of code Creation

Supporting Additional De-

vices

Additional Man Hours and/or lines of code

Programming support Additional Man Hours and/or lines of code

End-User ease of moving 1-5*

Mobility

End-User ease of replicating 1-5*

Programming support Man Hours and/or lines of code

End-User ease of use 1-5*

Composition

Expressivity Kinds of compositions allowed

Programming support Man Hours and/or lines of code

End-User ease of use 1-5*

Context

Sensitivity

Expressivity Kind of logic used to specify rules

Percent of user actions auto-

matically reduced

0-100%

Percent of correct automa-

tion decisions

0-100%

P
ro

g
ra

m
m

a
b

il
it

y

Automation

End-user ease of use 1-5*

Head turns Total number per task

Physical Movement % of time used for movement auxiliary to the main task

A priori user knowledge Total number of facts required to be known by the user to perform task

Keystrokes, clicks, and other atomic input Total number per task

Error and Error Recovery Total number of errors, and time spent recovering from error

U
sa

b
il

it
y

User Satisfaction Subjective (1-5) scaling (5 = most agreement)

* based on end-user support scale in Section 3.2

6. References
[1] A. Fox, et al "Integrating Information Appliances into an Interactive

Workspace," IEEE Computer Graphics & Applications, vol. 20, 2000.

[2] R. Grimm and e. al., "A system architecture for pervasive comput-

ing," In 9th ACM SIGOPS European Workshop, 2000.

[3] D. Garlan, at al, "Project Aura: Towards Distraction-Free Pervasive

Computing," in IEEE Pervasive Computing, vol. 1, 2002, pp. 22-31.

[4] M. Roman, et al, "Gaia: A Middleware Infrastructure to Enable Ac-

tive Spaces," IEEE Pervasive Computing Magazine, vol. 1, pp.74-83, '02

[5] M. Rauterberg, "Four different measures to quantify three usability

attributes: 'feedback', 'interactive directness' and 'flexibility'," in Design

Specification and Verification of Interactive Systems -- DSV-IS'95.

[6] D. Norman, Design of Everyday Things: Basic Books, 2002.

[7] D. DeWitt, "The Wisconsin Benchmark: Past, Present, and Future,"

The Benchmark Handbook, 1991.

[8] "SPEC benchmarks." http://www.spec.org/cpu2004/.

[9] B. Boehm, Software Engineering Economics: Prentice Hall

[10] M. Ebling et al, "Issues for context services for pervasive comput-

ing," in Middleware 2001 Workshop on Middleware for Mobile Com-

puting, Heidelberg, 2001.

[11] P. Castro et al, "A probabilistic room location service for wireless

networked environments," in UbiComp, 2001.

[12] A. Schmidt et. al, "Advanced interaction in context," in HUC 1999.

[13] P. Gray and D. Salber, "Modelling and using sensed context in the

design of interactive applications," in 8th IFIP Conference on Engineer-

ing for Human-Computer Interaction, 2001.

[14] K. Henricksen et.al, "Modeling context information in Pervasive

Computing Systems," in Pervasive 2002

[15] D. A. Cooper and K. P. Birman, "Preserving Privacy in a Network

of Mobile Computers," IEEE Symposium on Research in Security and

Privacy, 1995.

[16] J. Biehl, and B. Bailey. ARIS: An Interface for Application Reloca-

tion in an Interactive Space. in Graphics Interface 2004,

[17] A. Ranganathan, et.al. Evaluating Gaia using a Pervasive Comput-

ing Benchmark. UIUC technical report.

Proceedings of the 3rd Int’l Conf. on Pervasive Computing and Communications Workshops (PerCom 2005 Workshops)

0-7695-2300-5/05 $20.00 © 2005 IEEE

