
Plethora: A Framework for Converting Generic Applications to Run in a
Ubiquitous Environment

Zahid Anwar† Jalal Al-Muhtadi† William Yurcik‡ Roy H. Campbell†

†Department of Computer Science
‡National Center for Supercomputing Applications (NCSA)

University of Illinois at Urbana-Champaign (UIUC)
 {anwar, almuhtad}@ uiuc.edu byurcik@ncsa.uiuc.edu rhc@cs.uiuc.edu

Abstract

Applications designed for ubiquitous computing
environments need to be coded in a specific way in
order to fully realize the benefits of ubiquitous
computing. Currently, applications for ubiquitous
computing environments either need to be rewritten
entirely to benefit from ubiquity, or special wrappers
need to be written and customized for particular
applications to provide limited compatibility. We argue
that the real-world deployment of ubiquitous computing
will be realized when users can migrate and use the
applications they are familiar with in their daily lives
with minimal effort. Furthermore, these applications
should automatically benefit from typical ubiquitous
computing features including multi-device support, run-
time adaptation, environment-independence and
context-awareness. In this paper we present a
framework that allows us to port any generic
application to the domain of ubiquitous computing
without having to rewrite the code from scratch. We
have experimented with the framework in our prototype
ubiquitous computing platform known as Active Spaces.
This has allowed us to explosively increase the number
of applications supported by our Active Space.

1. Introduction

When Mark Weiser coined the phrase "ubiquitous
computing" in 1988 he envisioned computers embedded
in walls, tabletops, and everyday objects. In ubiquitous
computing, a person may interact with hundreds of
computers at a time, each invisibly embedded in the
environment and wirelessly communicating with each
other. This dream has failed to become a reality almost
two decades later because there is no easy way to design
applications for distributed environments. Ubiquitous
computing environments should typically contain a
large number of applications complementing each
other’s utility. For example, a meeting may require a
presentation application for demonstration, a word
processor application for taking minutes, and a
paintbrush application for notes.

For example, our research environment at UIUC
consists of an active space that executes applications
across a variety of computers and display monitors. Our
software infrastructure also consists of middleware
services that allow applications to be instantiated on,
and moved between, different machines in this
environment. For example, a drawing made by the
meeting chair on his desktop can be viewed at the same
time on other desktops being used by the various
attendees.

Although we have a wide range of applications
designed and running in our active space, whenever the
need for a new application arises it is painful to rewrite
anew according to our programming model. Currently,
applications for ubiquitous computing environments
either need to be: (1) rewritten entirely to benefit from
ubiquity or (2) special wrappers need to be written and
customized for particular applications to provide limited
compatibility. Often these wrappers require applications
to provide an SDK or COM object that developers can
use to customize the application for their purpose. In
either scenario, application-specific code needs to be
written. The Plethora framework allows us to execute
many generic applications in our active space without
having to be rewritten. Plethora also eliminates the need
for source code analysis since it works with binaries. It
allows the use of complicated and huge applications in
our active space regardless of whether they support the
COM standard or not.

In this paper we present Plethora –a framework built
on top a Gaia, a meta-operating system that brings the
functionality of an operating system to physical spaces.
Plethora allows an ordinary single user, single machine
application to be used in a distributed fashion with
controllers and views executing on different machines
enabling multiple users to interact with them
collaboratively. In addition the framework is
programmable and enables users to program “follow-
me” functionality into generic applications. It also adds
the concept of user sessions for these applications so
that a user can save and restore the entire state of all his
applications that are running in the room at any point in
time. Using Plethora a user can program an active space
to actuate his applications based on certain triggers and
events. For instance he can program a lights-controller

application to dim the lights of the room whenever he
leaves provided there is no one working there.

The rest of the paper is organized as follows: Section
2 describes some of the background and related work
required. Section 3 describes the design and
implementation of Plethora and Section 4 describes
Plethora applications in our Active Space as well has
how their lifecycle is managed. We evaluate and
compare our work to related research and discuss some
of the issues we encountered in Section 5. Finally, we
touch on some future work and conclude the paper in
Section 7.

2. Background

In this section, we define what we mean by ubiquitous
and what features an application should have to qualify
as one.

2.1. Ubiquitous Applications – A Definition

Our working definition of ubiquitous computing is:
• computing invisible to users (it disappears)
• computing independent of physical location

(ubiquitous)
• computing independent of display platform

(independent of GUI size, shape, I/O bandwidth,
and resolution) [6]

• computing that is not tied to instances of time
(asynchronous)

In our active space environment we have an
application known as Active Presentation, which can be
conceptualized as the ubiquitous version of a
PowerPoint type multimedia presentation application.
The application exports functionality to present slides in
multiple displays simultaneously, supports moving and
duplicating slides to different displays during the
presentation, and allows moving and duplicating the
input sensor that controls the presentation to different
devices. The presentation manager is based on the Gaia
application framework and uses PowerPoint to
manipulate the slides (using the COM interface). We
will use this application as an example to illustrate the
following features ubiquitous applications must support:

Multi-Device Support. With a variety and number of
I/O devices to choose from, the user should be free to
control his slides from the buttons on his smart watch,
PDA, cell phone to the windows dialog on a regular
desktop. Similarly the slides can be displayed on the
overhead projector as well as the conference attendees’
laptop computers simultaneously.

Session Maintenance. With a host of devices and
resources tied up by a single user application there is a

need for managing the association of applications with
users. We define a user session as a set of applications
and files that a user interacts with [4]. A user session
also includes state information and customization
options selected by the user. If a user moves out of the
vicinity of the display he is using, the application will
automatically suspend the session. When a user is
detected in the vicinity of another display or
workstation, the session is automatically migrated and
resumed at that display or workstation. In effect, users
can resume their work anywhere and anytime without
having to remember to save the latest changes or to
worry about copying their data to a removable disk. This
allows ubiquitous applications to become environment-
independent.

Location Awareness. The whole idea of ubiquitous
applications following users around falls apart if the
environment has no way of determining where the user
is currently located. For instance, in our active space
environment, applications can keep track of the user via
an indoor location service that can have several
location-sensing technologies such as radio frequency
ID (RFI) badge detectors, Bluetooth, WiFi base stations
and Ubisense [16].

Contextual Information. Context-awareness is a key
issue in ubiquitous computing. Applications should be
able to respond and adapt to changes in the
environment. Furthermore, applications can be
categorized into various contexts. For example, our
Active Space presentation may belong to a ‘meeting’
context whereas a Music Player application may belong
to a ‘light-entertainment’ context. Since these two
contexts may conflict, the Active Space scheduling
policy should be carefully designed. For instance, a
spontaneous game should not necessarily block a
planned conference meeting if the users of the two
applications happen to run in the same time slot.

2.2. Gaia Active Spaces Prototype

The computational infrastructure of our ubiquitous
computing environments is controlled by the Gaia OS
[14], a distributed meta-operating system that runs on
top of existing computer operating systems. The Gaia
OS Kernel provides a collection of services that
orchestrate the many heterogeneous devices and
services present in the environment to enable application
development. It integrates physical spaces and their
ubiquitous computing devices into a programmable
computing and communication system. Gaia provides
the infrastructure and core services necessary for
constructing ubiquitous computing environments.
Component-based applications developed for Gaia OS

use an application framework [Roman03] inspired by
the Model-View-Controller design pattern (see Figure
1). We refer to this framework as Model-Presentation-
Controller-Coordinator (MPCC).

 Figure 1. The Gaia MPCC Model

2.3. Application Framework

The MPCC framework separates applications into five
different components: (1) a model to implement
application logic and store the application state, (2) one
or more presentations to provide an output mechanism
for the model, (3) one or more controllers to provide
input to the model, (4) an adapter to translate controller
requests into method calls on the model’s interface, and
(5) a coordinator to manage the application composition
and allow dynamic binding of application components.
The application model uses events to notify
presentations and controllers about changes in the
application’s state. As a result, presentations and
controllers may invoke methods on the model’s
interface to obtain the new application state or to trigger
new changes. In Gaia, each component is implemented
as a CORBA object [5].

Although straightforward in design, the MPCC
framework can be difficult to implement. The Model
and Viewer are typically closely coupled, sharing global
variables and pointer references, such that decoupling
by placing them in separate address spaces with only
CORBA interfaces for communication represents a
significant programming challenge.

3. ‘Ubiquitizing’ Applications

3.1. The Need

People need control of information in many different
formats – data, text, graphics, video, audio, voice-mail,
Email, fax, bookmarks, documents, personal organizers
- and the amount of data is constantly growing. Because
there is little opportunity to distribute this information, it

becomes increasingly inaccessible – objects either have
to be endlessly copied or risk becoming accessible only
from one computer.

Significant research is going on to develop a 'killer'
application. We propose that ubiquitous applications do
not need to be ‘special’; instead generic applications can
be used in a ubiquitous environment without rewriting
them. In this paper we describe a number of popular
applications that have been given the properties of
ubiquitous computing using our framework. They have
been made location-aware in the sense that they
automatically detect when their user is moving to
another machine. They are collaborative and allow
multiple users to work on them jointly by distributing
their displays and input sensors across different
machines. They can be bridged with other types of
applications to enhance their functionality. We also
show how an operating system can be programmed
according to user preference.

3.2. A Compiler-Based Approach

We consider more complex classes, for instance word
processing. This class of application does not easily lend
itself to being subdivided into the traditional distributed
model-view-controller architecture that we have
previously described. This is due to the blurred
boundary between the view and the controller that
makes it difficult to differentiate between the input
sensor and presentations. Additionally there are more
features that word processors expose. A piece of
typewritten text can be made bold, italic, underlined,
resized, bulleted, etc. The MPCC design requires an
event be sent to the model to update the variable there,
for each such ‘font change’ action. More precisely, a
function has to be added to the CORBA stub for each
trigger, the values marshaled and sent over to the model
to have the appropriate interface exported. After the
computation is performed, the result is returned when
timing and consistency issues have been taken into
account. One way to automate this task, which was also
our first approach, was to build a compiler that would
take a straight-line piece of code and generate the
appropriate stubs, skeletons, marshaling and
demarshaling code (See Figure 2).

Figure 2. A Compiler for ‘Ubiquitizing’ Code

The problem with this approach is how to decide

which functionality to migrate to the model, and which
to keep behind. On one hand we would like a dumb
viewer and have all the computation in the model,
however, we also do not want to send it. For instance,
negative font values would have to be rejected. Thus the
compiler has to make a tradeoff between network
latency and client complexity. Similarly, if the user
vacillates, should the compiler allow a user to make an
ultimate decision before propagating it to the model or
take a more reactive approach? Although this approach
is elegant, it still requires effort on the user’s part. While
writing each line of code, the developer may have to add
annotations to signal the compiler which code he
doesn’t want moved. Aside from this, the problem of
rewriting the entire application still remains.

We decided to take a different approach, is it really
necessary to have a centralized approach (decoupling

the model from the viewer and controller)? We propose
a decentralized approach where each application has its
own model but the behavior of different models is
synchronized so the final output from all viewers
remains the same.

3.3. The Plethora Framework

Our approach is based on the observation that model
behavior is usually predictable. The algorithms will give
a deterministic output to a particular input permutation
provided all the various parameters and variables on
which the model is dependent are kept constant. For
example, a calculator application will always return the
same result for 22 / 7, a word application will reformat
the text in the same way every time someone presses the
‘Bold’ button, and a music player application will play

the same melody when a song is selected. There are
some exceptions to this rule namely applications that:

1. adapt themselves to the capabilities of the
machine such as size of memory, display and
occasionally performance

2. utilize machine learning or genetic algorithms
3. actively use randomization based on some

pseudo-random number generators
4. have dependencies on other active system

processes

The third point, the use of randomization, is usually a
characteristic of gaming applications, for instance a
Windows Minesweeper game will randomly generate a
new set of hidden mines every time its instantiated, to
make the game more challenging. The fourth point
relates to the class of applications known as services.
For example of such services we point to anti-virus
software that augment other applications and operating
system functions that are not directly used by the user.
We do not include these classes of applications to those
that can be ‘ubiquitized,’ since it is not clear how
distributed versions of these applications would benefit
a user.

The first two classes of applications need to be
addressed because they are by far the most common. For
instance a word processor may automatically choose a
default font if it discovers that the one the user selected
is not installed or available to the operating system. For
example, a painting application may resize its canvas
region depending on the display size and resolution
supported. A word processor may also display limited
learning capabilities by remembering what favorite
formatting options the user normally uses and modifies
the template to facilitate the user henceforth.

Figure 3 shows how we surround our applications
with a ‘virtual machine’ environment, a technique
similar to process migration check pointing schemes
used for intercepting API calls [1,15]. API interception
is a technique used to acquire crucial information about
the process like which files are opened, which graphics
devices are used, or which network connections are
established - providing the application with new
facilities without changing the application’s code.
However, the artificial environment we create for the
application serves the exact converse purpose - namely
controlling the resources available to the application so
that its behavior is more predictable.

3.4. Plethora Implementation

The current implementation of Plethora targets MS
Windows applications. We believe that the same
principals can be applied to other platforms especially
Linux. The VM takes the responsibility of creating,
managing and terminating the application.

Figure 3. Plethora Virtual Machine Architecture

We use a CORBA-based scripting language to create

our Gaia Applications and use the Windows
‘CreateProcess’ API to launch an application after
searching the registry for the executable name and path.
Any external dependencies the application has along
with libraries are version controlled and preset to values
that are predetermined across all the machines in the
space. After the application has been successfully
launched the VM adds system ‘hooks’ to the
application, to control all message traffic sent to or from
it. Windows Hooks are one of the few ways to inject
your code into a remote process’s address space. We
require that whenever the controlled application
examines its message queue using a ‘GetMessage’ or
‘PeekMessage’ function then the VM be informed about
it first. Therefore our spy code was written in a DLL and
used ‘SetWindowsHookEx’ to map our DLL to the
application. Our injected code subsequently
communicates the events to the VM using the ‘shared
memory’ IPC mechanism.

The next step, after injecting hooks, is to disable the
various functions Windows provides to directly change
the appearance of the application. Options such as
minimize, maximize, terminate, dock, cascade, resize
directly, are all disabled so that any attempt the user
makes to do so are captured by and executed through the
VM. The VM then queries the model to check if the
application has any state associated with it, if so then it
retrieves the state and applies that to the captured
application. Table 1 shows three scenarios where an
application state present in the model needs to be
reapplied.

Virtual Machine

Application

Atomic Broadcast
 of Events

Model

Virtual Machine

Application

Table 1: Scenarios for Storing State Information

3.5. Capturing Application State

An application process may consist of data regions
that include statically and dynamically allocated data.
For example, to complete the memory components of
the process state may require calls to malloc or new,
program stack and the value of registers, stack pointer
and program counter. A process may have open files
and inter-process communication channels with data in
transit.

An application state is determined by a group of
mechanisms. We initially made an unsuccessful attempt
at implementing a process memory snapshot similar to
what the Windows ‘Hibernate/Suspend’ option does at
the Operating System level. Since we were primarily
working with the Windows Operating System, we did
not have the privilege to take a snapshot of the process
memory (stacks and registers) since they are not visible
to the user. It was also more difficult because of the
need to save the state of the dependency processes.

Next we tried logging all the different events that had
occurred since the application had been started until
time to save state. Although such a recording of events
is not the true state of the application, the state can still
be reconstructed by replaying those events on to a new
instance of the application. It should be noted that this
could lead to a redundancy. For example - if a user
initially signs his name to a document a dozen times and
then later deletes it every time (because he does not like
the font or style) and then ultimately decides not to have
a document signature after all – this would lead to the
significant recording of redundant events.

We ultimately adopted a partial approach as shown in
Figure 4 for the case of Microsoft Word; the developer
is given freedom to specify what constitutes the state of
an application using an XML format. This is in case the
partial state information the VM saves is not sufficient
(likely to be a rare scenario). By default the VM saves
the contents of all child windows in the application. It
does this by a call to the ‘Enumwindows’ and copying

the displayed text/data/image for each of the enumerated
windows.

We ‘ubiquitized’ a group of windows applications and
the technique worked very smoothly for each
application. For instance, with Microsoft Word the state
stored was the document typed in the client area
together with the formatting, current cursor position, and
button values on the tool bars.

 Figure 4. Application State Stored in XML

Other implicit states such as whether the document is
in ‘Print Layout’ or ‘Normal’ view or what line number
the user was currently typing are ignored. The developer
may choose to add these as part of his state from a
graphical user interface or type them in an XML
document. The Graphical User interface provided lists
the COM interfaces that the application exports which
the user can click on to show that he is interested in
saving the data value it returns.

3.6. Management of Application Life Cycle

The natural question that arises from this is how to
manage all the applications since we have disabled

Scenarios where application
state needs to be reapplied.

Examples

(1) If an application is already
running in the space and the
user decides to add another
controller.

A user working on a
particular document and his
friend just walks in to help
him with it, i.e. collaborate on
it.

(2) The controller is migrated/
duplicated from one machine to
the other.

A user moves to another room
and wants his application to
follow him.

(3) A user session is being
retrieved from scratch. A
session is defined as the user
environment the system saves
when a user leaves a room.

A user opens his office early
morning and the system starts
up his favorite Email
application and newsreader.

direct control. The answer is that the scheduler for the
active space meta-operating system Gaia handles them
for the user with the help of a context engine [12] and a
space repository viewer as shown in Figure 5. The latter
is a store of the entities registered in the system, such as
different devices, displays and users, whereas the former
keeps track of activities going taking place in the space
for instance meetings, brainstorming sessions, free
relaxation time, and classroom lectures. The Location
Service is the source of location information for all
location-sensitive applications [11]. It fuses data from
multiple sensors, resolves conflicts, answers object-
based/region-based queries based on subscriptions for
location-based conditions, and notifies applications
when conditions become true. In order to subscribe to
the service, one has to create spatial regions and
associate different kinds of properties with these
regions.

In addition, we also confronted the problem of
actuating third-party applications that were not designed
to execute in a Smart Room environment. To handle

such cases, Plethora requires a user to fill out a GUI-
based form (a smaller version of which is shown in
Table 2). The VM uses this information to verify
whether applications can indeed run on the devices the
user has specified. This avoids situations where the user
leaves his an application running in his Smart Office and
Plethora attempts to move a document to his PDA but
instead crashes the PDA since there is not enough
memory in the PDA to support an application such as
Microsoft Windows.

Figure 5: The Gaia Scheduler Service

Table 2: Sample User Form for Categorizing Generic Applications for ‘Ubiquitization’

3.7. Location–Based Actuation

The scheduler service can be configured to perform
certain actions based on event triggers. We define an
action to be the execution of a method call on an entity
in a particular space. For example, ACTION1 may be
defined as start in the application Microsoft Word in the
Active Space Prototype Lab. Actions can have
properties such as delayed/partial execution and can be
rolled back or cascaded. Actions can be unconditionally
executed but typically they are executed as part of a
condition. The conditions on which actions are triggered
are called events. Event conditions are considered
commutative and associative so more than one
conditional event can be joined by logical connectives.

Event properties include location, time, and targets. For
example, EVENT1 can be when user approaches
LOCATION1 and time is between 9 AM to 5 PM.

Location applies to entities having proximity to
targets. Entities are objects in space that have a location
sensor. Target is an area of interest identified by its
Cartesian coordinates. Entities can be inside, outside,
near a target, or they could enter or exit it. For example,
LOCATION1 can be defined as a circle of radius 2m at
the center of an active space with coordinates 0,0,0. The
composition of actions, events, spaces, entities, and
users is termed as a behavior. Behaviors have a textual
description and can be categorized into domains as
shown in Figure 6.

Properties
Output Input Processing Resources

Display Sound Keyboard Mouse
Required Required

Application
None

Needed Optional
Flexible Fixed

Size
MuteOptionalVolume

Flexible
Volume
Fixed

None
NeededOptionalRequired None

NeededOptionalRequired
Smart
Watch PDA iPAQ Cell

Phone LaptopDesktop

Microsoft Word ● ● ● ● ● ●
Microsoft Excel ● ● ● ● ● ●

MP3 Player ● ● ● ● ● ● ● ● ●
Microsoft Paint ● ● ● ● ● ●
PPTPresentation ● ● ● ● ● ● ● ● ●

Email Reader ● ● ● ● ● ● ● ● ●
Media Player ● ● ● ● ● ● ●

Active Space Applications

Application
Framework

Space
Repository
Service

Event
Manager
Service

Context File
System

Presence
Service

Context Service

Scheduler Service usesData Store
Location
Service signals

Figure 6. Studying the Relationships Between Entities, Actions, Events, Spaces, and Users

4. Related Work

There are many research projects working to create an
infrastructure to support ubiquitous computing. Many
of these efforts propose new programming models and
try to support the unique nature of pervasive
applications and devices by providing systems support
from the ground-up. As a result these research projects
support only a small variety of applications. What
differentiates our research is that we provide support for
‘ubiquitizing’ popular existing applications via a
platform-independent middleware that can be layered on
top of any operating system.

Microsoft’s Remote Desktop Connection (RDC)
allows users to connect to a terminal server or another

computer running Windows. The advertisement for
RDC states: “wherever you are, if you have Internet
access, you can work as if you were sitting at your home
computer”. RDC is extended into the realm of pervasive
computing by running a single server and clients on any
machine a user may wish to display upon. This
simplistic approach has three primary drawbacks. First,
while RDC provides a current desktop picture snapshot
to all clients and all the computation occurs centrally.
Second, RDC has no concept of state. Third, as Figure
7 shows, network bandwidth can be more than three
times that of Plethora since RDC broadcasts the entire
desktop constantly while Plethora only transmits events
as they occur.

Figure 7. RDC vs. Plethora in Terms of Network Bandwidth for an MSWord Application. Note that the
test period consists of multiple phases: (1) application startup, (2) active usage, (3) idle, and (4)

termination. RDC showed significantly more bandwidth consumption even during the idle phase.

A descendent of Microsoft’s Digital Dashboard [9] is
the SharePoint Portal Server is designed for users to
share documents for review and manage meetings using
a web services based version control system. Plethora
allows collaboration of existing applications without
actually requiring the setting up of a centralized server
and portal services with user profiles and web
interaction.

MIT’s Project Oxygen, takes an AI goal-oriented
approach to ubiquitous computing [10]. The goal-
oriented approach centers around three concepts: (1)
goals denoting intents, (2) techniques that satisfy intents,
and (3) a Planner that matches goals and techniques.
The Planner is the heart of the goal-oriented system,
searching through a plan tree of goals and techniques.
Our work is similar in the sense that we are enabling
end-user control of the ubiquitous computing
environment. However, instead of allowing users direct
control of an application and focusing on HCI issues
surrounding this task, we also provide a general
framework that supports user control of application
functionality. Software engineering is critical in this
project since Oxygen is the backbone for
implementations that the Planner creates whereas
Plethora has no such restriction.

Rhapsody [13] is a UML based application
development environment that allows a user to specify
Use Cases and their corresponding behavior as
sequence, collaboration, state charts, and activity
diagrams. Rhapsody also provides tools to convert Use
Cases into executable models. This design methodology
does not allow complete code reuse and the design
framework for ubiquitous applications is completely
user specific which is not scalable.

One.World’s [3, 7] four foundation services – (1) a
virtual machine, (2) tuples, (3) asynchronous events, and
(4) environments - provide basic building blocks for
creating adaptable applications. However, since they
have built the kernel and its services from the ground
up, applications have to be completely rewritten. In fact

they have recruited outside developers to rewrite the
‘electronic laboratory assistant’ for One.World.

Stanford’s Interactive Workspace project uses an
Event Heap to allow application interaction with
decoupled applications [8]. The Event Heap is derived
from a tuplespace. Events within the Event Heap are
typed, self-describing, tuples stored in a centralized
location. Applications can post events and remove them
from the heap either destructively or nondestructively.
Applications are designed by experts to handle and
consume certain types of events that are meaningful to
the particular application. Plethora differs in that we
allow non-expert users to design applications.

5. Future Work

One stark observation a user makes when using
Plethora is that event propagation is slow. Atomic
ordering on all events makes displays update themselves
with a delay equal to that of the slowest receiver.
Therefore it is quite common for a user who is using a
ubiquitous “Paint Brush” application to notice that the
circle he drew on the primary display may appear half a
second later on other displays. This was generally found
to be a secondary concern to the users and can be fixed
if a relationship equation can be determined between the
various types of events. Events that are not related can
then be grouped and transmitted together even if the
timestamp of one is before the other.

We plan to extend Plethora for frameworks such as
Linux and envision that it should be an easier exercise
since the event-capturing module of the virtual machine
can be designed as a kernel module giving us additional
flexibility. Ultimately, this will allow us to support a
more generic class of applications.

We are also working on a cross platform VM that will
allow us to duplicate functionality. For example, we
plan to support the Windows-specific applications like
Microsoft Office on Linux by broadcasting events along
with the subset of the image to the Linux-VM

counterpart using image processing techniques. No
doubt more support from operating system
manufacturers and application developers to control
process behavior would aid Plethora.

We are also planning to integrate with Gaia Clicky [2]
to support moving generic applications across displays
to simulate one integrated display wall.

6. Conclusion

In this paper we present Plethora - a framework for
‘ubiquitizing’ existing applications. It works by
synchronizing application models across devices using
the concepts of event filtering, code injection, and state
duplication. We report here that Plethora works well for
deterministic classes of applications and we look
forward to reporting more results as we embark on the
future work efforts we describe.

More than a decade after Mark Weiser came up with
the concept of “Computing crawling out-of-the-
woodwork”, the idea of ubiquitous computing is still far
from being realized. The primary reason for this is that
research developers have concentrated on ‘reinventing
the wheel’, finding the ultimate application, and
developing separate ubiquitous systems from the ground
up. The contribution of Plethora is that ‘ubiquitizing’
existing popular applications avoids these three
problems and may be the catalyst needed for users to
grasp the concept of ubiquitous computing as well as
stimulating the development of new ubiquitous
applications (that do not have to be rewritten).

7. References

[1] H. Abdel-Shafi, E Speight, and J.K. Bennett, “Efficient
User-Level Thread Migration and Checkpointing on Windows
NT Clusters,” USENIX Windows NT Symp., 1999.

[2] C.R. Andrews, G. Sampemane, A. Weiler and R. H.
Campbell, “Clicky: User-Centric Input for Active Spaces.”
University of Illinois AT Urbana-Champaign Dept. of CS
Technical Report UIUCDCS-R-2004-2469, 2004.

[3] L. Arnstein, R. Grimm, C.-Y. Hung, J. H. Kang, A.
LaMarca, S. B. Sigurdsson, J. Su, and G. Borriello, “Systems
Support for Ubiquitous Computing: A Case Study of Two
Implementations of Labscape,” IEEE Intl. Conf. on Pervasive
Computing and Communications (PerCom), 2002.

[4] D. Carvalho, R.H. Campbell, G. Belford, and D. Mickunas,
"Definition of a User Environment in a Ubiquitous System,"
International Symposium of Distributed Objects and
Applications, 2003.

[5]The Common Object Request Broker (CORBA):
Architecture and Specification, Revision 2.2, July 1998.
<URL:http://www.omg.org/corba/c2indx.htm>

[6] K. Gajos and D.S. Weld, “Automatically Generating User
Interfaces for Ubiquitous Applications,” Intl. Conf. On
Intelligent User Interfaces, 2004.

[7] R. Grimm, J. Davis, E. Lemar, A. MacBeth, S. Swanson,
T. Anderson, B. Bershad, G. Borriello, S. Gribble, and D.
Wetherall. “Programming for Pervasive Computing
Environments,” University of Washington Dept. of Computer
Science Technical Report, UW-CSE-01-06-01, 2001.

[8] B. Johanson and A. Fox, "The Event Heap: A Coordination
Infrastructure for Interactive Workspaces," IEEE Workshop on
Mobile Comp. Systems and Applications, 2002.

[9] Microsoft SharePoint
<http://www.microsoft.com/sharepoint/evaluationoverview.as
p>

[10] J. M. Paluska, “Automatic Implementation Generation of
Pervasive Applications,” M.I.T Student Oxygen Workshop,
2004.

[11] A. Ranganathan, J. Al-Muhtadi, S. Chetan, R.H.
Campbell, and M. D. Mickunas, “MiddleWhere: A
Middleware for Location Awareness in Ubiquitous Computing
Applications,” IEEE Intl. Conf. on Pervasive Computing and
Communications (PerCom), 2004.

[12] A. Ranganathan, J. Al-Muhtadi, and R.H. Campbell,
“Reasoning about Uncertain Contexts in Pervasive Computing
Environments,” IEEE Intl. Conf. on Pervasive Computing and
Communications (PerCom), 2004.

[13] Rhapsody, “UML Application Development Platform for
Pervasive Computing,” I-Logix Product Documentation.
<http://www.nohau.se/products/uml/>
[Roman03] M. Román, B. Ziebart, and R.H. Campbell.
“Dynamic Application Composition: Customizing the
Behavior of an Active Space,” IEEE Intl. Conf. on Pervasive
Computing and Communications (PerCom), 2003.

[14] M. Román, C. K. Hess, R. Cerqueira, A. Ranganathan,
R.H. Campbell, and K. Nahrstedt, "Gaia: A Middleware
Infrastructure to Enable Active Spaces," IEEE Intl. Conf. on
Pervasive Computing and Communications (PerCom), 2002.

[15] J. Srouji, P. Schuster, M. Bach, and Y. Kuzmin, “A
Transparent Checkpoint Facility On NT,” USENIX Windows
NT Symposium, 1998.

[16] Local Position System and Sentient Computing, Ubisense
Webpage <http://www.ubisense.net/>

