
Mobile Gaia: A Middleware for Ad-hoc Pervasive Computing

Shiva Chetan, Jalal Al-Muhtadi, Roy Campbell, M. Dennis Mickunas
University of Illinois at Urbana-Champaign

{chetan, almuhtad, rhc, mickunas}@cs.uiuc.edu

Abstract—Pervasive Computing promotes an environment that
blurs the distinction between digital and physical devices and
integrates all entities in a physical space into a cohesive
programmable unit. Some of the early research activities in
pervasive computing focused on developing infrastructures for
pervasive applications. These infrastructures successfully
merged physical and digital entities in an environment to
create aware homes, smart offices and active spaces. In recent
years, ad-hoc pervasive computing has attracted attention with
the proliferation of low cost, short-range wireless devices. Ad-
hoc pervasive computing does not assume digital devices to be
tied to physical environments and aims to create digital
“clusters” that can be viewed as a unified entity. The user can
program this cluster of devices with a single programming
interface. In this paper, we introduce our middleware, called
Mobile Gaia, for ad-hoc pervasive computing. Mobile Gaia is a
services-based middleware that integrates resources of various
devices. It manages several functions such as forming and
maintaining device collections, sharing resources among
devices and enables seamless service interactions. It also
provides an application framework to develop applications for
the device collection. The application framework decomposes
the application into smaller components that can run on
different devices in this collection. We discuss the architecture
of Mobile Gaia and introduce a sample application that has
been designed using our middleware.

Ubiquitous computing; personal active spaces, ad-hoc
networking; Gaia; mobility; middleware.

I. INTRODUCTION

The traditional notion of pervasive computing is a
digitally-enhanced habitat where physical and digital devices
are seamlessly integrated. Physical devices such as lights,
doors, electrical appliances and sensors are integrated with
digital devices such as handhelds, mobile phones and laptop
computers. Physical devices can be controlled by their digital
counterparts and digital devices acquire information about
the environment from physical devices. This vision has been
realized in various projects such as Active Spaces [1], Aware
Home [2] and Interactive Workspaces [3].

In recent years, there has been a surge of interest in ad-
hoc pervasive systems [4, 5]. These systems do not assume a
particular infrastructure and devices can be grouped together
without an underlying infrastructure. These systems are well
suited to scenarios where devices are grouped based on
particular criteria. Examples of such systems include cluster
of devices belonging to a single user, devices grouped for a
particular application such as pervasive gaming and data
sharing and device ensembles for resource sharing.

In this paper, we present our middleware, called Mobile
Gaia, for ad-hoc pervasive computing. Our notion of ad-hoc
pervasive computing is a cluster of personal devices that can
communicate and share resources among each other. The
user can program the cluster through a common interface.
We refer to this cluster as a personal active space. Mobile
Gaia contains services to discover devices that form the
personal space, maintain the composition of the cluster, share
resources among devices in the cluster and facilitate
communication.

Each personal active space has a coordinator device and
zero or more client devices. The coordinator maintains the
composition of the cluster. It expects periodic heartbeat
messages from all client devices, discovers new devices in
the vicinity and enables resources to be shared among
devices in the cluster. Any device that has the required
resources can act as the coordinator of the cluster.

Services in Mobile Gaia are decomposed into
components. This allows only required components of
services to be loaded into the middleware thus reducing
memory and battery power requirements. Component-based
middleware has been found suitable for mobile devices from
our past research [6, 7]. Componentization is achieved by
identifying independent units of a service whose composition
results in the original service. For example, location service
is a composition of sensor fusion, spatial model and location
adaptor components.

Services in Mobile Gaia are present in two roles –
coordinator and client. When a device is a coordinator of a
cluster, the services on the device are present in coordinator
role while they are present in the client role when the device
is a client in a cluster. In coordinator role, services have
additional responsibilities such as integrating similar services
on all devices in the cluster, managing services in all devices
and so on. For example, location service of a coordinator
fuses sensor information from multiple location sensors in
the cluster and maintains a spatial model in addition to
receiving location information from various location sensors.
Similarly, event service of a coordinator device maintains a
database of all event channels in the device cluster. These
functionalities are not present in services of client devices.
Location service of a client device just sends information
from its location sensors to the coordinator device.
Therefore, the location service of the client device contains
only the location adaptor component that reads location data
from its sensor.

We have found our component-based service architecture
suitable for the above requirements. When a device is the

coordinator of a cluster, required service components are
dynamically loaded into the middleware. Similarly,
coordinator components are unloaded and client components
are loaded if the device becomes a client in the cluster. We
have designed a service deployment framework that manages
the services of Mobile Gaia. The framework keeps track of
all service components loaded in the middleware. When the
role of a device changes from coordinator to client or vice
versa, the cluster management service notifies the framework
of this change. The framework unloads the current service
components and loads the new set of components into the
middleware.

There are a few pervasive computing products that
facilitate interactions among devices over ad-hoc networks.
These include Bluetooth and IrDA-based devices, mobile
phones with GPRS and so on. While these products enable
interactions among devices and allow formation of
communicating clusters they do not provide a uniform
abstraction to similar resources in the cluster. Our notion of a
personal active space provides a programming and usage
abstraction to all devices in the cluster. Applications and
services can use resources of the devices in the cluster
through a common abstraction. This enables several
functionalities such as sharing location information among
different devices in the personal active space, authenticating
all devices in the space using a single authentication process
and so on.

Section 2 discusses the architecture of Mobile Gaia.
Section 3 discusses how services interact. Section 4 explains
the personal active space management protocols. Section 5
describes Mobile Gaia application framework. Section 6
discusses a sample Mobile Gaia application. Section 7
outlines some related work. Section 8 concludes.

II. MOBILE GAIA ARCHITECTURE

Mobile Gaia consists of a set of core services that
manages the device cluster. These services enable the
devices in the cluster to share resources and data seamlessly.
The architecture of Mobile Gaia is shown in Figure 1.

Figure 1. Mobile Gaia Architecture

The core services make up the kernel of Mobile Gaia.
The cluster management service discovers devices in its
vicinity, negotiates with the devices to join the cluster and
manages the composition of the cluster. It maintains a list of
devices present in the cluster. Event service enables events to

be communicated among devices in the cluster. Location and
context services provide location and context information to
all devices in the cluster. The security service provides
authentication and access control services to the cluster. The
service deployment framework acts as a container for these
services. The component management core provides
necessary low level support for creating and managing
components.

Each device in the cluster contains a thin Mobile Gaia
kernel that consists of service deployment framework,
component management core and cluster management
service to interact with the coordinator. A typical personal
active space is shown in Figure 2, with a representative
application.

L
o
c
a
tio
n

in
fo
rm
a
tio
n

L
o
c
a
ti
o
n

in
fo
rm
a
ti
o
n

Figure 2. A typical personal active space. The laptop (A) is designated as

a coordinator. All other devices are clients. Location information is
captured by two different devices and utilized by a distributed driving

directions application running in the personal space.

III. SERVICE INTERACTION

Mobile Gaia supports seamless interaction among
services in the device collection. Each service exists in two
roles – coordinator role and client role. Mobile Gaia uses a
service deployment framework that decides which role of the
service to invoke based on whether the host device is a
coordinator or a client of the cluster. Below we discuss the
service deployment framework and how it facilitates
interaction among various services of Mobile Gaia.

A. Service Deployment Framework

Services in Mobile Gaia are implemented as components.
The service deployment framework forms a container for
these service components. It manages installation of new
service components, loading and unloading of components
and removing components when they are no longer needed.
The service deployment framework is based on the “What
You Need Is What You Get” (WYNIWYG) model [6]. In the
WYNIWYG model, a system loads a minimal set of
components required to provide a certain service to
applications. The WYNIWYG model was used in the 2K
Operating System [8], which was a precursor to the Gaia
Operating System [1]. The WYNIWYG model was found to
be suitable for integrating resource-constrained devices such
as PDAs, cell phones and other mobile devices into
infrastructure-based distributed systems [7]. We are reusing

the WYNIWYG model to integrate mobile devices into
infrastructure-free distributed systems.

The Service Deployment Architecture is shown in Figure
3. Each service in Mobile Gaia consists of a service wrapper
component and a set of service components. The service
wrapper component provides interfaces to access the service
components. Therefore, the service wrapper is dependent on
the service components to export the intended services. For
example, when a GPS-enabled laptop becomes the
coordinator of a cluster, the location service in the laptop is
responsible for fusing sensor information from different
devices of the cluster along with the GPS information from
the laptop. Therefore, the location service of the laptop
consists of the sensor fusion, spatial model and GPS-adaptor
components. If the laptop becomes a client device to a
cluster, the sensor fusion and spatial model components are
unloaded by the deployment framework and only the GPS-
adaptor component is retained in the location service. The
location service wrapper provides appropriate interfaces to
the location service in the coordinator and client roles.

Figure 3. Service Deployment Architecture

When a service is deployed, the service specifies the
components that are to be loaded in the coordinator and
client roles. Whenever a device changes roles from
coordinator to client or vice versa, the cluster management
service notifies the service deployment framework of this
change. For each service, the service deployment framework
checks to see if components have to be loaded/unloaded and
makes appropriate changes. A typical service component
specification is shown in Figure 4. The service deployment
framework also facilitates resource sharing.

In the following sections, we discuss a few services of
Mobile Gaia. For each service, we describe their
functionalities and components in coordinator and client
roles.

B. Cluster Management Service

A key capability of our system is the ability to discover
nearby personal devices dynamically, and bootstrap a
personal active space on the discovered devices. When new
personal devices are within range, they are added to the
personal active space on the fly. Depending on the
capabilities of the new device, our framework loads
appropriate components and runs additional services that
allow the system to utilize the device’s capabilities.
Likewise, once a device is out of range, it is automatically
removed from the personal active space. The functionality

of discovering devices and forming clusters are handled by
the cluster management service.

The cluster management service consists of different
components (Figure 4). The discovery component provides a
mechanism for discovering nearby devices. The discovery
component utilizes different discovery protocols, including
Bluetooth device discovery, IrDA, or a combined discovery
protocol like the one proposed by Woodings et al. [9]. The
cluster management protocol implements a mechanism for
bootstrapping a personal active space (if none exists), for
facilitating the dynamic addition and removal of personal
devices and for selecting a coordinator for the cluster. The
distributed space repository maintains a database of active
devices and services in the personal active space. It keeps
this information up-to-date through a heartbeat mechanism,
where devices send periodic notifications to indicate their
presence. Finally, a local component repository runs on
client devices to maintain a list of components running
locally on the device.

Coordinator:
 ClusterManagementProtocol
 DiscoveryComponent
 DistributedSpaceRepository
 HeartbeatReceiver
Client:
 ClusterManagementProtocol
 LocalComponentRepository
 HeartbeatSender

Figure 4. Cluster Management Component Specification

C. Event Service

The event service is a publish-subscribe middleware that
is used to send events among devices in the cluster. These
events include updates to location information, heartbeat
messages informing that the device is part of the cluster and
location-based events. Events are implemented using event
channels, which are objects that decouple the publishers from
the subscribers. When an application wants to send events, it
creates an event channel in the host device. The event service
of the host device registers the event channel with the
coordinator. The event service in the coordinator maintains a
list of event channels in the cluster. When an application
wants to subscribe to an event channel, it queries the local
event service which in turn queries the event service of the
coordinator for event channels. The event service of the
coordinator acts like a repository that contains information
about various event channels in the cluster.

Coordinator:
 EventChannelWrapper
 EventChannelRepository
 EventChannelManager
Client:
 EventChannelWrapper
 EventChannelManager

Figure 5. Event Service Component Specification

The Event Service Component Specification is shown in
Figure 5. The event service in both coordinator and client
roles contains event channel wrapper and event channel
manager components. The event channel manager provides
interfaces to create and destroy event channels on the local

device. It also supports interfaces to publish and subscribe to
local and remote event channels. The coordinator contains
the event channel repository component that maintains a
database of all event channels in the cluster and their
descriptions. This database is updated when an event channel
is created or destroyed in any of the devices in the cluster.

D. Location Service

The location service is responsible for enabling location-
awareness in the device cluster. The location service fuses
location information from different devices in the cluster and
provides a probabilistic value of location for the entire
cluster [10]. Different devices in the cluster have different
location-sensing technologies such as GPS, WiFi, RFID,
Ubisense [11] and so on. Our location service fuses location
information from different devices and arrives at a
probabilistic estimate of the location information. This
location information is conveyed to all devices in the cluster.
This cooperative approach to sharing location information
enables devices to be location-aware in heterogeneous
location-sensing environments. The location service also
supports a spatial database that contains a spatial model of
the physical world. The spatial database enables location
information to be associated with spatial information. Spatial
information is required for route planning, finding points-of-
interest and for location-based triggers. Location-based
triggers are events that are generated when a certain spatial
condition is satisfied. These events include object entering a
certain region, object in the vicinity of another object and so
on. Currently, we are exploring usage of multi-resolution
spatial information for location-based triggers. Multi-
resolution spatial information is useful for devices where
storage is at a premium. Devices can download maps at
different resolutions based on memory capacity of the
device, bandwidth, battery power and so on.

The location service component specification is shown in
Figure 6. When a device runs as a coordinator of a cluster,
the location service in the device contains sensor fusion and
spatial model components. In addition, the location service in
both coordinator and client devices contains location sensor
components that get information from location sensors
attached to the devices. This includes adaptor components
for GPS, WiFi, Radio frequency sensors and so on.

Coordinator:
 LocationServiceWrapper
 SensorFusionModule
 SpatialDatabaseModule
 {LocalLocationSensorModules}
Client:
 LocationServiceWrapper
 {LocalLocationSensorModules}

Figure 6. Location Service Component Specification

E. Security Service

Security is essential in personal active spaces. The
security service can be divided into two main parts –
authentication and access control. Device and space
authentication is needed to ensure that only authorized
devices are allowed to connect to a user’s personal active
space, and a device can only connect to personal spaces

approved by its owner. Access control identifies what
information or resources a device can share with a specific
space name. We deploy a simple scheme for authenticating
devices through public key, which we describe in section 4.
For access control, users are allowed to create simple
security policies on the personal device, which specify what
services may run on the device when connected to a certain
space. Security has the following components in both
coordinator and client devices: DigitalSigner,
SignatureValidator, and PolicyEnforcer.

IV. PERSONAL ACTIVE SPACE MANAGEMENT

PROTOCOLS

In this section we describe how clusters, or personal
active spaces, are setup and bootstrapped.

A. Setting up a Personal Active Space

A personal active space consists of all discoverable
personal devices, with a security policy that allows them to
participate in a specific personal active space, e.g. Bob can
configure his devices to only join “Bob’s personal space” but
no other spaces. In each personal active space, a device is
designated as the coordinator of the space. The coordinator
is responsible for cluster and service management. Ideally,
the device with the most CPU, memory, and power resources
should be selected as the space coordinator. The setup phase
consists of the following steps:

1. The user identifies a name for his personal active space. A
key pair is generated for this space. Key pairs are also
generated for all devices.

2. On all client personal devices, the user installs the Mobile
Gaia thin kernel, consisting of the client services. In addition,
each client is configured with a list of spaces that they are
permitted to connect to. For each space, the public key of
that space is stored in the device. We assume that public keys
are transmitted and stored in the device by the user using an
out-of-band mechanism, e.g., typing it in, or using IrDA with
confirmation and/or a pass code.

3. For each device that the user wishes to designate as a
coordinator, the user needs to install the Mobile Gaia
middleware, configure the space names that it is permitted to
coordinate, and the public/private key pair associated with
these space names. Because a user may designate more than
one device to be a coordinator (this is useful in scenarios
where a user forgets one of his devices, so another device
can act as coordinator), the user is also expected to assign a
‘preference value’ to each coordinator, which indicates
which device the user prefers to be designated the
coordinator in case more than one coordinator device exists.

B. Bootstrapping a Personal Active Space

Our aim is to provide an automated method for
bootstrapping a personal active space once personal devices
are near each other and are able to communicate. This
automated bootstrapping and management of devices
provides a plug and play solution that does not require users
to reconfigure their devices each time a personal active space
is bootstrapped. The bootstrapping process works as
follows.

1. The discovery service running on a designated coordinator
machine discovers nearby devices.

2. Upon discovering a client device, an invitation is sent to
join the space, along with the space name.

3. If the security policy on the target device permits
connection to this space, a random number is sent back to the
coordinator for authentication purposes.

4. The coordinator returns a packet containing its
communication address and the random number signed with
the space’s digital signature. If the space is configured so that
only authenticated devices are allowed to join, the device
will need to send back a token signed by its private key, to
achieve mutual authentication.

5. If a coordinator discovers another coordinator device for
the same space name, then negotiations take place to identify
which coordinator prevails. If one of the coordinators is in
the ‘bootstrapping phase’ while the other has already
bootstrapped, then the latter will take precedence.

6. Otherwise, a net value is calculated based on the
‘preference value’ a user assigns to each designated
coordinator, combined with other factors including
remaining power level, processing capability, etc. and the
coordinator with the higher value prevails. The other
coordinator utilizes the event service to notify all of its client
devices of a coordinator switch. It then acts as a regular
client device.

C. Adding and Removing Devices

Once the cluster is bootstrapped, when new devices are
discovered the coordinator invites them to join, and a
protocol similar to what was described above takes place.
Active client devices are monitored through a heartbeat
mechanism and are processed by the cluster management
service at the coordinator. If the heartbeat of a particular
device stops, the device times out and is removed from the
cluster. If a device leaves a cluster, it becomes an ‘orphan’
device. Orphan clients wait for invitations to join clusters,
whereas orphan coordinators start the bootstrapping process
in an attempt to form a new cluster.

V. APPLICATION FRAMEWORK

In Gaia, we identified six patterns [12] that are needed for
typical ubiquitous computing applications. These are multi-
device support, user-centrism, run-time adaptation, mobility,
context-awareness, and environment independence. The
application framework layer of Mobile Gaia (Figure 1)
provides a framework that automates the identified patterns
and facilitates the creation and management of ubiquitous
applications and their components. The application layer
extends the Model-View-Controller paradigm [13], and
facilitates the decomposition of an application into different
input elements, output elements, and a model, where the
logic of the application resides. This layer makes it easy for
application developers to develop distributed applications
that run on different devices in the personal active space. The
framework provides a common interface for deploying and
managing distributed applications. By utilizing the
automated common programming patterns, developers can

incorporate multi-device support, dynamic adaptation,
mobility, and context awareness seamlessly into their
applications.

VI. SAMPLE APPLICATION

In this section we discuss a consumer-level Mobile Gaia
application that we are designing. This application is an
Indoor/Outdoor Navigation System that uses the Mobile
Gaia middleware for locating a person in indoor as well as
outdoor environments, providing directions to a point of
interest and notifying the user when he enters a certain
region of interest. The application is designed using our
application framework. It consists of a model component that
contains the application logic; Query Interface, Location
Receiver and Trigger Receiver components that act as input
elements of the application, and Spatial Display and Audio
Tracker components that act as output elements.

Location information is gathered by two possible devices, a
GPS device for outdoor positioning, and a cellular phone
with RFID for indoor positioning. The Location Receiver
component receives location updates from the location
service of Mobile Gaia. It sends this information to the
model. The model notifies the Spatial Display component to
display the position of the object in its spatial map. Spatial
Display component provides a visual representation of the
spatial model stored in the location service of Mobile Gaia. It
displays the location of the object on the map similar to a
GPS display device. The Query Interface can be used to
query for places of interest and also to map out a route to a
destination. Trigger Receiver component receives location
triggers when a certain spatial condition is satisfied. For
example, if the user has programmed to be notified when he
is close to an ATM machine, the location system sends a
trigger when the user is within a certain distance from the
ATM machine. The Audio Tracker component provides
audio notifications. These components can be run on
different devices and our application framework and services
facilitate interactions.

VII. RELATED WORK

Wireless Personal Area Network (WPAN) [14] is a well-
researched area where devices communicate over short-range
wireless links. There are some WPAN systems based on
Bluetooth and WiFi [15]. WPAN provides necessary services
for discovery and interaction among devices. Mobile Gaia
uses WPAN as a communication substrate and supports
several middleware services. It also enables interaction
among these services. We also support an application
framework to build applications over Mobile Gaia
middleware. Wang et al. [5] present a model for forming
device groups based on context information. Central to this
research work is the concept of a social group that identifies
the devices that need to be formed part of the group. This
project does not define a middleware for forming device
groups and does not have an application framework to
develop applications for this group. The Impromptu project
[16] supports a framework for building ad-hoc pervasive
systems. The framework provides a context communication
language that facilitates communication among participating
entities in an ad-hoc manner. The project does not support a

generic service based middleware or application framework
like Mobile Gaia.

VIII. CONCLUSION

In this paper we introduced our middleware, Mobile
Gaia, for ad-hoc pervasive computing. Mobile Gaia
facilitates the integration of resources of a cluster of personal
devices and provides a common programming interface to
program the cluster. Services are designed as components
that can be dynamically loaded and unloaded from the
middleware using a deployment framework. The middleware
also supports an application framework that can decompose
an application into components. This decomposition enables
an application to be distributed across multiple devices. In
this paper, we have described the architecture of Mobile Gaia
and a sample application.

IX. REFERENCES

[1] M. Roman, C. K. Hess, R. Cerqueira, R. H. Campbell, and K.
Narhstedt, "Gaia: A Middleware Infrastructure to Enable
Active Spaces," IEEE Pervasive Computing Magazine, vol. 1,
pp. 74-83, 2002.

[2] C. D. Kidd, R. Orr, G. D. Abowd, C. G. Atkenson, I. A. Essa,
B. MacIntyre, E. Myanatt, T. E. Starner, and W. Newstetter,
"The Aware Home: A Living Laboratory for Ubiquitous
Computing Research," presented at CoBuild'99, 1999.

[3] B. Johanson, A. Fox, and T. Winograd, "The Interactive
Workspaces Project: Experiences with Ubiquitous Computing
Rooms," IEEE Pervasive Computing Magazine, vol. 1, 2002.

[4] M. Mutka and D. Zhu, "Promoting Cooperation Among
Strangers to Access Internet Services from an Ad Hoc
Network," presented at IEEE International Conference on
Pervasive Computing and Communications, 2004.

[5] B. Wang, J. Bodily, and S. K. S. Gupta, "Supporting Persistent
Social Groups in Ubiquitous Computing Environments Using
Context-Aware Ephemeral Group Service," presented at IEEE
International Conference on Pervasive Computing and
Communications (PerCom'04), Orlando, FL, 2004.

[6] F. Kon, T. Yamane, C. Hess, R. Campbell, and M. D.
Mickunas, "Dynamic Resource Management and Automatic
Configuration of Distributed Component Systems," presented
at 6th USENIX Conference on Object-Oriented Technologies
and Systems (COOTS'2001), San Antonio, Texas, 2001.

[7] M. Roman, A. Singhai, D. Carvalho, C. Hess, and R. H.
Campbell, "Integrating PDAs into Distributed Systems: 2K
and PalmORB," presented at International Symposium on
Handheld and Ubiquitous Computing (HUC'99), Karlsruhe,
Germany, 1999.

[8] F. Kon, R. H. Campbell, M. D. Mickunas, K. Nahrstedt, and F.
J. Ballesteros, "2K: A Distributed Operating System for
Dynamic Heterogeneous Environments," presented at 9th
IEEE International Symposium on High Performance
Distributed Computing, Pittsburgh, 2000.

[9] R. W. Woodings, D. D. Joos, T. Clifton, and C. D. Knutson,
"Rapid Heterogeneous ad hoc Connection Establishment:
Accelerating Bluetooth Inquiry Using IrDA," presented at
Wireless Communications and Networking Conference
(WCNC 2002), 2002.

[10] A. Ranganathan, J. Al-Muhtadi, S. Chetan, R. Campbell, and
M. D. Mickunas, "MiddleWhere: A Middleware for Location
Awareness in Ubiquitous Computing Applications," presented
at 5th International Middleware Conference (Middleware
2004) (accepted), 2004.

[11] UbiSense, "Local position system and sentient computing."
http://www.ubisense.net/.

[12] M. Roman and R. H. Campbell, "Providing Middleware
Support for Active Space Applications," presented at
ACM/IFIP/USENIX International Middleware Conference,
Rio de Janeiro, Brazil, 2003.

[13] G. E. Krasner and S. T. Pope, "A Description of the Model-
View-Controller User Interface Paradigm in the Smalltalk-80
System," Journal of Object Oriented Programming, vol. 1, pp.
26-49, 1988.

[14] T. Siep, I. Gifford, R. Braley, and R. Heile, "Paving the way
for Personal Area Network Standards: An Overview of the
IEEE P802.15 Working Group for Wireless Personal Area
Networks," IEEE Personal Communications, vol. 7, pp. 37-43,
2000.

[15] T. Salonidis, P. Bhagwat, L. Tassiulas, and R. LaMaire,
"Distributed Topology Construction of Bluetooth Personal
Area Networks," presented at Infocom, 2001.

[16] M. Beigl, T. Zimmer, A. Krohn, C. Decker, and P. Robinson,
"Creating Ad-Hoc Pervasive Computing Environments,"
presented at Second International Conference on Pervasive
Computing, Linz/Vienna, Austria, 2004.

