

Gaia Mobility: Extending Active Space

Boundaries to Everyday Devices

James Bresler Jalal Al-Muhtadi Roy Campbell

Department of Computer Science,

University of Illinois at Urbana-Champaign,

{jbresler, almuhtad, rhc}@uiuc.edu

Abstract
In this paper we introduce an architecture for extend-

ing the reach of ubiquitous computing environments, or

active spaces, to resource-stripped mobile devices, cell

phones, and wearable computers. The architecture allows

lightweight output and/or input elements of ubiquitous

applications to run on the mobile devices, allowing users

to interact with active spaces remotely while using mini-

mal processing, power, and network bandwidth.

Keywords
Ubiquitous computing, mobility, Gaia, Java, Mobile

phones.

1. Introduction

Ubiquitous computing is poised to have a profound ef-

fect on how humans interact with machines, physical

spaces, services, everyday devices, and other humans.

Ubiquitous computing envisions a world where a plethora

of embedded processors, wearable computers, smart con-

sumer devices, sensors, and digital communications are

tightly coupled to form a convenient, information-rich

environment. This environment merges the physical and

computational infrastructures into a single integrated “ac-

tive space.” We define an active space as a physical space

coordinated by a context-based software infrastructure that

enhances the ability of mobile users to interact and con-

figure their physical and digital environments seamlessly.

Active spaces provide users with an environment where

data, applications, and digital services are omnipresent

and accessible anytime and anywhere. Gaia [1] is a dis-

tributed middleware that provides the core support neces-

sary to construct general-purpose active spaces.

Gaia utilizes a layered architecture, which facilitates

the abstraction of physical spaces and the various entities

contained within as a single programmable entity. Figure 1

illustrates the layered Gaia infrastructure. The low-level

layer consists of the basic functionality, which includes

component management, resource discovery, security, and

other core services necessary for any general-purpose dis-

tributed computing environment. We refer to this layer as

Gaia’s kernel. Building applications using only the low-

level support is tedious and inflexible. In Gaia, we identi-

fied six patterns [2] that are needed for typical ubiquitous

computing applications. These are multi-device support,

user-centrism, run-time adaptation, mobility, context-

awareness, and environment independence. The applica-

tion layer of Gaia provides a framework that automates the

identified patterns and facilitates the creation and man-

agement of ubiquitous applications and their components.

The Unified Object Bus (UOB) was introduced [3] to sup-

port device heterogeneity and mobility. UOB provides

common tools for managing components running in an

active space. By porting the UOB to different platforms, it

was possible to provide a unified interface to Gaia ser-

vices even on heterogeneous devices. It was also possible

to port the UOB host to some high-end PDA devices run-

ning MS Pocket PC or Windows™ CE, which allowed

mobile users to interact with active spaces using their mo-

bile devices. However, full scale deployment of ubiquitous

computing is hindered by the need for an infrastructure of

high-tech devices and networks. While processing power

and digital communication are becoming cheap commodi-

ties available in many places, they are still not as perva-

sive as mobile phones or consumer devices. Typical mo-

bile phones used by average users are resource-stripped

devices with limited memory, power, and processing ca-

pabilities. Indeed, more powerful mobile phones or PDA–

mobile phone hybrids are becoming available; however,

because of their higher prices and larger sizes, they are not

as wide-spread as standard resource-stripped cell phones.

Currently, the UOB is too heavyweight to port to such

resource-stripped mobile phones or consumer devices, and

therefore, these devices cannot become native Gaia execu-

tion nodes.

In this paper we present the Gaia Proxy service, which

enables resource-stripped mobile devices, cell phones, and

wearable computers to utilize Gaia services, interact with

active spaces, and run input and/or output elements with-

out the extra overhead of installing large, processor-

intensive components.

 Figure 1 – Gaia Layered Architecture

The Gaia Proxy Service will enable remote mobile us-

ers to communicate and interact with active spaces; even if

they were located in an environment where rich device

connectivity is not available. This can be used in many

business scenarios, such as providing an interface for

stock traders “on the floor” and stock analysts to commu-

nicate securely using common devices such as mobile

phones.

The remainder of this paper is divided as follows. Sec-

tion 2 describes some simple motivating scenarios. Sec-

tion 3 discusses the Gaia Proxy architecture. Section 4

evaluates the performance of the proxy. Section 5 dis-

cusses future work. Finally, Section 6 concludes.

2. Scenario

The motivating thrust behind the Gaia proxy service

came after considering real-life deployment scenarios of

ubiquitous computing, particularly, in classroom environ-

ments, seminars, and meetings. For example, we have

developed a suite of ubiquitous applications that utilizes

active spaces to create seamless and rich environments

that improve the learning experience of students in a lec-

ture or a seminar setting. These applications in-

cluded a distributed slideshow that can broadcast

notes and content to all participants, an automated

method for recording attendance, a scribble appli-

cation to add comments or annotations to the class

notes, as well as several interactive features, such

as allowing the instructor to poll or quiz students

and allowing students to send questions to, or chat

with, the instructor. Similarly, a suite of ubiquitous

applications is developed to support group meet-

ings and other scenarios. However, many of these

scenarios assume that participants have access to

high network bandwidth and personal devices that can act

as Gaia execution nodes. In reality, most students do not

carry laptops or high-end PDAs with them when going to

classes. On the other hand, mobile phones are very com-

mon and truly pervasive. The Gaia Proxy Service allows

students to use more common devices to utilize the ser-

vices and capabilities provided by active spaces.

Furthermore, we would like to extend the services pro-

vided by active spaces so that remote users who are lo-

cated at areas with no networking or computational infra-

structures other than simple cellular network coverage,

can still interact and join remote active spaces.

3. Gaia Proxy Architecture and Design

Gaia Mobility Support is implemented by using a proxy

that sits between Gaia and mobile clients. The proxy is

responsible for encoding and delivering messages to de-

vices that cannot directly communicate with the active

space. The proxy provides mobile clients access to some

of the low-level services of Gaia. Mobile clients and their

users are authenticated to Gaia through the proxy. By util-

izing Gaia’s distributed PAM (Pluggable Authentication

Modules) architecture [4] it is possible to support a light-

weight authentication mechanism between the mobile cli-

ent and the proxy, then allowing the proxy to authenticate

to the authentication service on behalf of the client. The

authentication credentials in this case can be stored at the

proxy. In addition, the proxy enables mobile clients to

access other Gaia services like the file system, discovery

and presence, etc.

In addition, the proxy enables mobile clients to utilize

some of the functionality provided by Gaia’s application

framework. For instance, the proxy along with the mobile

client can act as an input element for an application (input

sensor) or as an output element for another application

(presentation). The proxy changes the state of an applica-

tion when an input event occurs on a mobile device. The

mobile client software is designed to be very simple and

can be implemented on a large variety of devices.

Figure 2 – Gaia Mobility Architecture

The Gaia Proxy is primarily responsible for bidirec-

tional forwarding and encoding of information needed for

a mobile device to interact with Gaia. To obtain this in-

formation, it is necessary for the proxy to own several

Gaia application components. The proxy updates the state

of mobile clients when an event occurs on one of these

application components that cause the view of the applica-

tion’s data to change.

The Gaia Proxy needs several device parameters to

provide an encoding of data that makes the mobile device

software as simple as possible. To facilitate this, mobile

clients are required to provide basic device information

including the type of device, screen resolution and color

depth. We envision scenarios where we may have hun-

dreds of mobile devices connected to Gaia through the

proxy service. For this reason, the proxy supports group-

ing clients into several pools based on the device parame-

ters and every client in a pool will receive the same data-

encoding message. The client pooling significantly de-

creases the encoding costs when there are large number of

clients connected to a single application.

Because many mobile devices support a very small

network bandwidth, it is possible that a client cannot re-

ceive every message. To address this, the Gaia Proxy

flags every message that determines the primary state of a

client. These messages are idempotent messages that

change the state of an application but do not require any

user action. If there are multiple queued messages that

determine the primary state of a client, the proxy will drop

all primary state messages except the message that is cur-

rently in transit and the last message added to the queue.

This allows applications such as a slideshow viewer to

only start sending a client the most current information,

while guaranteeing clients receive all other messages.

The clients used on mobile devices consist of simple

software that connects to the Gaia proxy, sends informa-

tion about the application or service the user wants to ac-

cess, sends basic device parameters, and waits for mes-

sages. When the client receives a message, the user’s

view of the application will be updated. The format of the

message includes constraints specific to each service or

application, allowing it to be processed easily on the mo-

bile device. For example, the slideshow application in

Gaia guarantees the device will receive messages consist-

ing of PNG files with a resolution that is suitable for the

target device. Depending on the application and security

policies, the user may be able to perform events that affect

the state of the application. To support this, the mobile

application sends a message to the proxy when an input

event occurs. The proxy will respond by notifying Gaia.

Gaia then updates the state of the application, causing the

mobile device to see the updated state.

The client software is designed to be implemented on a

wide variety of devices, including devices that support

J2ME or the .NET compact framework. The client soft-

ware for communicating with the Gaia proxy is less than

200 lines of Java code and uses less then 5 KB of device

space for a mobile slideshow viewer.

4. Gaia Proxy Evaluations

To evaluate the Gaia Proxy architecture, we tested a

seminar class scenario where the instructor utilizes several

Gaia applications to present a paper or teach a class.

These applications include:

Figure 3 – Gaia Mobility Design

• The slideshow application, which uses Gaia facili-

ties to programmatically control which displays

and devices are used for displaying content, syn-

chronize between different displays, and move

content from one display to another.

• The attendance application, which allows the ac-

tive space to record attendance automatically.

• The poll application, which allows the instructor

to interact with the students by creating polls or

multiple choice quizzes and pushing them to us-

ers’ personal devices, then getting replies back.

The client software on the mobile phone is written in

Java, and can be run on any device supporting Java Mo-

bile Information Device Profile with sockets support.

Furthermore, the client software is very lightweight and

requires minimal space and processing footprint. We

tested the scenario above with a large number of students

using mixed devices, including high-end PDAs running as

native Gaia nodes, mobile phones with data transmissions

of about 2 Mbps (comparable to 3G mobile phones), and

mobile phones with limited bandwidth and processing

power (comparable to 2G GSM mobile phones). The re-

sults are shown in Table 1. Figure 4 shows how the differ-

ent components of the slideshow application are distrib-

uted.

Mobile devices connecting to the Gaia Proxy can be

forced to authenticate to Gaia through the authentication

service so that the attendance can be recorded automati-

cally.

Table 1: Performance measurements.

(a) Avg. time to display next slide. (b) Avg. time to load a 5

question interactive poll (c) Avg. time for input to take effect

(choosing ‘next’ to go to next slide, or sending back poll

results). All results are in seconds.

Configuration (a) (b) (c)

Native Gaia node using WiFi at 11

Mbps

<1 <1 <1

Basic mobile phone, 20 MHz proces-

sor, ~ 2 Mbps connection through car-

rier

2 <1 1

Basic mobile phone with 20 MHz

processor, 14.4 Kbps connection

through carrier

12 2 3

5. Future Work
Future work includes creating thin mobile clients for

other Gaia applications, as well as tools for developers to

facilitate the creation of input and output elements that can

be used over the proxy services. We plan to investigate the

possibility of allowing the Gaia proxy to push Java applets

or WAP content dynamically to mobile phones. We plan

to assess the usability of the system in large classroom

scenarios and in distant learning scenarios.

6. Conclusion

The Gaia Proxy is a lightweight service that allows ba-

sic J2ME enabled devices to interact with active spaces.

Mobile users who reside in “dumb” environments with

limited or no computational or communication infrastruc-

tures can now exploit typical cellular phones and cellular

phone networks for interactions with active spaces.

7. References

[1] M. Roman, C. K. Hess, R. Cerqueira, A. Ranga-

nat, R. H. Campbell, and K. Nahrstedt, "Gaia: A

Middleware Infrastructure to Enable Active

Spaces," IEEE Pervasive, vol. 1, pp. 74-82,

2002.

[2] M. Roman and R. H. Campbell, "Providing Mid-

dleware Support for Active Space Applications,"

presented at ACM/IFIP/USENIX International

Middleware Conference, Rio de Janeiro, Brazil,

2003.

[3] M. Roman and R. H. Campbell, "GAIA: Ena-

bling Active Spaces," presented at 9th SIGOPS

European Workshop, Kolding, Denmark, 2000.

[4] J. Al-Muhtadi, A. Ranganathan, R. Campbell,

and M. D. Mickunas, "Cerberus: A Context-

Aware Security Scheme for Smart Spaces," pre-

sented at the First IEEE Annual Conference on

Pervasive Computing and Communications (Per-

Com 2003), Fort Worth, Texas, 2003.

