
Providing a Web Interface for Active Spaces

James F. Bresler, Roy H. Campbell, Jalal Al-Muhtadi
{jbresler, rhc, almuhtad}@cs.uiuc.edu

Department of Computer Science
University of Illinois at Urbana-Champaign

December 10, 2003

Abstract

Pervasive computing promises a new significance in
our lives by providing seamless computing services.
Much of the current research on active spaces is fo-
cused on supporting new devices and applications
that provides compelling reasons for users to adopt
pervasive computing. Simultaneously, there is sig-
nificant research on accessing content in information
spaces. It is possible to treat the Web like a de-
vice in an active space, resulting in a merged active
and information space. This allows users to lever-
age existing information space technologies to inter-
act with active spaces. This can be used to easily
distribute content produced in an active space to a
very large number of users and interact with an active
space from a traditional computing environment. In
this paper we describe several requirements and chal-
lenges for making an active space accessible over the
Web, describe a prototype implementation, and pro-
pose a direction for future research.

1 Introduction

Pervasive computing promises a new computing envi-
ronment where users seamlessly interact with a large
spectrum of devices and applications. These comput-
ing environments allow users vastly greater function-
ality than traditional computing environments, ease
everyday tasks, and allow users to be more produc-
tive. We refer to these integrated computing envi-
ronments as active spaces [12]. As users embrace ac-
tive spaces, they will start to produce content that
needs to be distributed to people outside of their ac-
tive space. Therefore, a mechanism is needed for re-
mote users to access an active space that supports
a wide variety of applications, imposes minimal re-
quirements for end users, provides strong security,
and scales well to large numbers of clients.

There are many ubiquitous computing applications
that require collaboration between users who preside
in different locations; some of these users may not
be part of an active space. For example, a meet-
ing for a group of distance learning students requires
collaboration between several users who reside in dif-
ferent locations. For these situations, it is possible to
form a virtual active space that can be accessed us-
ing existing communication technologies. Users could
join multiple virtual active spaces, allowing users to
appear to be at multiple places at the same time
and interact with several environments. Therefore,
a mechanism is needed to access an active space that
is reliable, uses existing communication mechanism,
provides strong security, accomodates large numbers
of clients, and supports a wide variety of applications.

There will be a large group of users that gradually
adopt pervasive computing. These users will want to
access their active spaces from traditional computing
environments. Many of these users will demand ac-
cess to their active spaces from environments like ho-
tel rooms or Internet cafes where limited infrastruc-
ture is available. Many of these users require technol-
ogy that works over a firewall. Furthermore, a large
group of users may be interested in accessing an ac-
tive space from devices such as cell phones or PDAs
where they can access the Web but cannot run re-
flective middleware services. Therefore, a mechanism
is needed to remotely access an active space that is
secure, supports a wide variety of applications and
scenarios, requires no software installation on a com-
puter accessing the active space, is easy to use, and
uses an existing, very well supported communication
mechanism like the Web.

There has been significant research and work on
web applications frameworks such as Struts [6, 13] in
the last few years. However, these frameworks do
not integrate with active spaces, limiting interactions
with the physical world. There has been significant

1



research on controlling ubiquitous computing envi-
ronment from a web browser [11], and research has
been performed to determine how users in an active
space can access the Web [1]. Because of this research
and the ubiquity of web accessible computers, we be-
lieve the Web is an ideal environment for remotely
accessing active spaces.

1.1 Problem
We believe that component based active spaces will

become commonplace. Some of these systems, such
as those based on Gaia [12], use reflexive middleware
that cannot be used behind firewalls and require spe-
cial software installation. Furthermore, although we
expect most active spaces to support several compo-
nents viewing or providing input to an application,
some active spaces may support only a limited num-
ber of these components efficiently.

The Web is an ideal mechanism to access an active
space because of its ubiquity. However, the Web is
designed to pull data. Many applications need the
ability to push data so an effective user interface can
be designed. Furthermore, many applications require
the ability to instantly respond to user events and
intelligently encode data. This can be accomplished
by embedding application logic in a web page using
technology like Java [7]. However, this logic runs in
a severely restricted environment; as a result of this,
all network communication from a web client must
be to the machine containing the web server [3].

Several features have been proposed for active
spaces that include having a computer respond when
a user walks next to it [10] and using badges to track
users [9]. These features are impossible to support
over the Web because users may not have the neces-
sary hardware.

Many of these issues can be addressed by insert-
ing a proxy inside an active space that interacts with
Web clients. This allows one component in an ac-
tive space to interact with several clients, clients to
interact with an active space when they cannot use
reflexive middleware, client software that is simple
to implement, and client software that can under re-
stricted but common environments like the Java VM
[3].

2 Active Space Web Accessibil-
ity Challenges and Require-
ments

In this section, we discuss the challenges and re-
quirements for making an active space web accessi-

ble.

2.1 Challenges
Providing web accessibility support for an active
space creates several unique challenges.

2.1.1 Authentication
Authentication and access control are necessary

features for practical web accessibility. It is possi-
ble that several users accessing an application over
the Web will share one set of credentials, especially
if an active space cannot support a large number of
components bound to an application efficiently. A
mechanism is needed to determine the appropriate
set of credentials to issue for a set of users accessing
a common application. In addition, an algorithm is
needed to determine whether a new user has sufficient
privileges to share a set of existing credentials.

2.1.2 Context Awareness
An active space may support features to determine

the context of an application. However, clients ac-
cessing an application over the Web have very lim-
ited context information, and several clients sharing
one component may confuse the active space. Future
work is needed to address these problems.

2.2 Requirements
There are several requirements for providing web ac-
cessibility support for an active space.

2.2.1 Application Support
Users in an active space are accustomed to using a

wide variety of applications on a routine basis. These
users will demand web accessibility for a wide variety
of applications to approximate native remote access
of an active space.

To minimize the number of applications that must
have web accessibility support manually written, it
is possible to use active space features to automati-
cally support some applications. For example, active
spaces running Gaia use a context file system [5] ca-
pable of converting data to a format desired by an
application on the fly. This can be used to write one
web accessibility component that supports viewing
PowerPoint presentations and PDF documents [5].

2.2.2 Adaptable
Users accessing active spaces on the web are using a

transitional technology to approximate native remote
access of an active space. Therefore, it is critical that
web accessibility works in a large variety of settings.
Many environments, such as airport terminals, do not
permit users accessing the Web to install software. To

2



avoid this, logic can be embedded within a web page
using technology such as Java [7].

It is also possible that several users wishing to ac-
cess an active space are behind a firewall. A large
percentage of firewalls allow outgoing connections to
certain TCP ports, like 443. This implies that it is
possible to support clients behind a large percent-
age of firewalls by only communicating over a limited
number of well known ports.

2.2.3 Scalable
Users in an active space may desire support for

allowing a large number of clients to view content
simultaneously. Some active spaces do not handle a
large number of components efficiently. Therefore,
several web clients must share a single component to
support a large number of users.

The network I/O for certain types of content can be
significant when data is transferred to a large number
of clients. Many of these applications can achieve a
significant reduction in bandwidth usage by encoding
data in an intelligent manner.

2.2.4 Interopable
The web accessibility support for an active space

must not affect the design of the active space. This
suggests that clients accessing an active space over
the Web must appear as standard components to the
active space, possibly after going through a proxy.

3 Case Study: Gaia OS Web
Proxy

Gaia is a component based meta operating system
that provides an infrastructure designed to facilitate
ubiquitous computing. It supports a wide variety of
applications running on a large selection of devices,
context awareness, user authentication, and access
control [2, 12]. Gaia uses a component model that
partitions applications similar to the Model-View-
Controller [8] by dividing applications into model,
input sensor, presentation, and coordinator compo-
nents. A model component implements the logic of an
application, an input sensor component is responsi-
ble for informing the model component when an input
event occurs, a presentation component exports the
application’s data to a viewable form, and a coordi-
nator components is responsible for the management
of other components [12]. The components are im-
plemented using CORBA; CORBA uses nonstandard
ports that many firewalls block. A web proxy has
been implemented for Gaia that provides a generic
infrastructure for web accessibility. Functionality has

Figure 1: Gaia Web Accessibility Architecture

been implemented to allow clients over the Internet to
view or control presentations and monitor the status
of an active space.

3.1 Proxy Architecture
The Gaia Web Proxy is based on the proxy de-

sign pattern [4] and controls access to Gaia from web
clients. The Gaia Web Proxy resides in an active
space and contains a mix of presentation and input
sensor components bound to model components. The
Gaia Web Proxy will encode and send clients infor-
mation based on events the component receives, and,
for input sensor components, will change the state of
the application based on client messages.

Clients utilize the Gaia Web Proxy by connecting
to a standard web server in the active space which
resides at a well known location. The content received
from the web server contains logic that allows users
to interact with an application by connecting to the
web proxy.

3.2 Proxy Design
The Gaia Web Proxy must perform bidirectional

forwarding of information between web clients and
Gaia. This information can be obtained by having
the proxy contain a set of components bound to ap-
plications. To minimize risk of security compromise
due to different application privilege levels and the
risk of instability due to application logic bugs, each
component will reside in a separate process.

Each component process will directly communicate
with web clients accessing the application the com-
ponent is bound to. The component process is re-
sponsible for encoding idempotent messages which
determine a client’s state when an input event oc-
curs. These messages will be broadcasted to all the
component’s web clients.

Application specific logic in the component process
runs in a dedicated thread. This logic calls a func-
tion when a new message needs to be broadcasted

3



Figure 2: Screenshot of a web client viewing a pre-
sentation syncronized with a meeting

and processes incoming messages from web clients.
It is possible to use technologies such as COM [14] to
allow application support to be implemented without
modifying the component process’s logic.

The Gaia Web Proxy component processes will be
managed by a master process. The master process
is responsible for accepting new connections from
clients, finding out which component they wish to
access, and then moving control of the client to the
appropriate component process. The master process
allows one network port to be used for all web clients
and still put each component in a separate process.

3.3 Proxy Implementation
The Gaia Web Proxy performs bidirectional for-

warding of information needed to interact with an
application between web clients and Gaia. This in-
formation can be obtained by maintaining a set of
components that are bound to applications. These
components are created by treating component pro-
cesses as standard Gaia components and sending mes-
sages to Gaia requesting their creation.

Communication between the master process and
component processes is implemented with a bidirec-
tional named pipe. The master process initiates com-
munication with a component process when a new
client wants to access the component’s application.
When this occurs, the socket API is used to trans-
fer ownership of the client’s socket to the component
process. The named pipe is also used by the com-
ponent processes to inform the master process when
a web client disconnects, a component is about to
terminated, or any serious error occurs.

The proxy’s design suggests a method is needed to
determine which component a web client should as-
sociate with. This is implemented by requiring each
component process to contain a unique, user speci-
fied application identifier. When a client connects to
the proxy, he sends an application identifier which
the master process attempts to match to a compo-
nent process. This mechanism allows a web client
to pick a specific application component to associate
with when several different components are available.
Because Gaia implements access control by assign-
ing credentials to components [2], this design allows
different privilege levels for users accessing the same
application.

This results in an implementation of the Gaia Web
Proxy where every client initially connects to a stan-
dard web server located inside an active space that
resides at a well known location. The user receives
a web page containing logic to connect to the Gaia
Web Proxy and request a specific application compo-
nent. When a web client connects, the master process
uses non blocking I/O to obtain the application iden-
tifier from the client. Then, the proxy attempts to
find a component process by looking up the desired
application type in the component process directory.
If an appropriate component process is available, the
client’s socket will move to the component process.

This implementation gives the component pro-
cesses the responsibility of encoding and sending mes-
sages to clients. This is implemented by providing ba-
sic component process functionality and a simple API
for writing application support. The core function-
ality contains logic to broadcast messages to several
users, forward input messages to application logic,
and communicate with the master process. The core
component process functionality requires messages to
be idempotent and determine the state of a client.
This allows the component process to drop messages
if a client cannot receive them at a sufficiently fast
rate.

4



3.4 Benefits

The Gaia Web Proxy satisfies the requirements for
web accessibility support.

3.4.1 Extensible

The Gaia Web Proxy component process can be
modified to support an additional application by im-
plementing the application specific logic in the com-
ponent process.

3.4.2 Simple Client

The Gaia Web Proxy is designed to make clients
as simple as possible. A client is responsible for con-
necting to the proxy, sending the desired application
type, and waiting for messages. When application in-
put is supported by the proxy, clients trigger events
by sending messages over the socket. This functional-
ity can be implemented in a Java applet. Therefore,
no client software installation is necessary. The client
code for viewing and controlling a presentation con-
tains less then 225 lines of Java.

3.4.3 Scalable

The Gaia Web Proxy supports sharing components
between several web clients accessing the same appli-
cation identifier, minimizing the load on Gaia. The
only significant marginal resource utilization for a
client requesting use of an existing application com-
ponent is network I/O.

3.4.4 Works Over Most Firewalls

The Gaia Web Proxy only uses port 443 to commu-
nicate with clients. This is allowed by most firewalls.

3.4.5 Interopable

The Gaia Web Proxy does not require any changes
to Gaia to support web applications.

3.5 Future Work

The Gaia Web Proxy needs future work to support
authentication and context awareness.

3.5.1 Authentication

The current implementation of the Gaia Web
Proxy does not support authenticating users. It is
possible to address this by requiring web clients to
send authentication credentials along with the appli-
cation identifier to the master process. The master
process would use the Gaia Authentication Service to
verify the credentials are valid and sufficient.

3.5.2 Context Awareness
The Gaia Web Proxy provides limited context

awareness by allowing applications to provide or re-
ceive context information. For example, an applica-
tion has been implemented that receives events from
the Gaia Event Service [12] when users enter or leave
the active space. The application uses the proxy to
allow web clients to receieve a constantly updated list
of users in the active space.

Future work is needed to determine how the proxy’s
core logic can use context information to improve the
user experience on a non application specific level.

3.6 Evaluation
The Gaia Web Proxy provides a practical mecha-

nism for a large number of web clients to interact with
an active space. The web accessibility support has
been demonstrated to guests visiting the active space
laboratory at the University of Illinois at Urbana-
Champaign. Furthermore, the proxy is often used
internally to view presentations and monitor active
space parameters.

The current version of the Gaia web accessibil-
ity support does not authenticate users properly and
does not support context awareness. Authentication
can easily be implemented in the future. Future work
is needed to determine how to use context informa-
tion obtained from web clients.

Several active space features cannot be supported
because web clients do not have sufficient hardware.
For example, determining a web client’s location can-
not be supported. However, most users do not expect
ubiquitous computing to be available in every envi-
ronment. Many of these users will be content with
using the web as a transition technology until perva-
sive computing is more widely adopted.

4 Conclusion and Future Work
In this paper, we documented how an active space

and an information space can be merged, resulting
in a scenario where users can interact with an ac-
tive space from an information space. Because of the
ubiquity of the web and previous research findings, we
believe the Web is in ideal transition mechanism for
accessing active spaces remotely. We described why
web accessibility support for an active space must
support a wide variety of applications, cannot require
a client to install software, must work over firewalls,
and must not require changes to the active space’s
component model. Then, we described an implemen-
tation for web accessibility support using a proxy and

5



demonstrated that a proxy can satisfy the web acces-
sibility requirements.

In the future, we plan to develop web accessibility
support for additional Gaia applications. In particu-
lar, we plan to focus on supporting applications that
have frequent, incremental updates such as drawing
vector graphics. Finally, we will investigate tech-
niques to authenticate web clients accessing an active
space and using a web client’s context to uniquely tai-
lor content.

References
[1] Sven Buchholz and Alexander Schill. Web

Caching in a Pervasive Computing World. Pro-
ceedings of the 6th World Multiconference on
Systemics, Cybernetics and Informatics (July
2002), 2002.

[2] Roy H. Campbell, Jalal Al-Muhtadi, Prasad Nal-
durg, Geetanjali Sampemane, and M. Dennis
Mickunas. Towards Security and Privacy for Per-
vasive Computing. Theories and Systems, Mext-
NSF-JSPS Internation Sympsoium (IIS 2002),
2002.

[3] J. Steven Fritzinger and Marianne Mueller. Java
Security , 1996. Sun Microsystems White Paper.

[4] Eric Gamma, Richard Helm, Ralph Johnson,
and John Vlissides. Design Patterns - Elements
of Reusable Object-Oriented Software. Addison-
Wesley, Reading, Massachusetts, 1995.

[5] Christopher K. Hess and Roy H. Campbell. A
Context-Aware Data Management System for
Ubiquitous Computing Application. Interna-
tional Conference of Distributed Computing Sys-
tems (ICDCS 2003), 2003.

[6] Ted Husted, Ed Burns Craig, and R. McClana-
han. Struts Manual. Apache Group, 2003.

[7] Douglas Kramer. The Java Platform: A White
Paper , 1996. Sun Microsystems White Paper.

[8] G. Krasner and S. Pope. A description of the
model-view-controller user interface paradigm in
the smalltalk-80 system. Journal of Object Ori-
ented Programming, 1(3):26–49, 1988.

[9] Mike Addlesee and Rupert Curwen and Steve
Hodges and Joe Newman and Pete Steggles and
Andy Ward and Andy Hopper”. Implementing a
sentient computing system. Computer, 34(8):50–
56, 2001.

[10] Gopal Pingali, Claudio Pinhanez, Tony Levas,
Rick Kjeldsen, and Mark Podlaseck. User-
following Displays, 2002.

[11] Shankar R. Ponnekanti, Brian Lee, Armando
Fox, Pat Hanrahan, and Terry Winograd.
ICrafter: A Service Framework for Ubiquitous
Computing Environments. Lecture Notes in
Computer Science, 2201, 2001.

[12] Manuel Roman, Christopher K. Hess, Renato
Cerqueira, Anand Ranganathan, Roy H. Camp-
bell, and Klara Nahrstedt. Gaia: A Middleware
Infrastructure to Enable Active Spaces . IEEE
Pervasive Computing, Oct-Dec:74–83, 2002.

[13] Steven Sweeting, Clive Jones, , and Aaron Rus-
tad. Integrating and Mapping a Web Application
MVC Pattern. Java Developers Journal, 2002.

[14] Sara Williams and Charlie Kindel. The Com-
ponent Object Model: A Technical Overview ,
1994. Published on Microsoft Developer Net-
work.

6


