Olympus: A High-Level Programming Model for Pervasive Computing
Environments'

Anand Ranganathan, Shiva Chetan, Jalal Al-Muhtadi, Roy H. Campbell, M. Dennis Mickunas
University of Illinois at Urbana-Champaign
{ranganat, chetan, almuhtad, rhc, mickunas}@uiuc.edu

Abstract

Pervasive Computing advocates the enhancement of
physical spaces with computing and communication
resources that help users perform various kinds of tasks.
We call these enhanced physical spaces Active Spaces.
Active Spaces are highly dynamic — the context and
resources available in these environments can change
rapidly. The large number of entities present in these
spaces and the dynamism associated with them make it
difficult for developers to program these environments. It
is not always clear at development time which resources
are to be used for performing various kinds of tasks and
how to use them. In this paper, we introduce a new high-
level programming model for pervasive computing
environments, Olympus. The main feature of this model is
that developers can specify Active Space entities and
common Active Space operations at an abstract, high
level. Active Space entities (which include services,
applications, devices, physical objects, locations and
users) can be specified using high level descriptions. Our
[framework resolves these descriptions into actual Active
Space entities based on constraints specified by the
developer, ontological descriptions of entities, the
resources available in the current space, space-level
policies and the current context of the space. The
programming model also provides the developers with
operators for commonly used functions. Examples of
operators include start, stop and move components. Thus,
developers do not have to worry about how various tasks
are performed in the space in which their program is to
be deployed. These details are taken care of by the model
and the developer is free to focus on the actual logic of
the program. In this paper, we discuss the programming
model, its implementation and several example Active
Space programs that have been developed using this
model.

1. Introduction

Pervasive Computing envisions a world with users
interacting naturally with device-rich, context-aware

environments to perform various kinds of tasks. However,
these environments are highly dynamic. The resources
(which include devices, services and applications)
available in these environments, as well as the context of
these environments, can change rapidly. Thus, programs
running in these environments must be able to adapt to the
changing contexts and resource availabilities. This places
a large burden on the developer in specifying how the
program should behave in different contexts and when
different kinds of resources are available. Besides,
different environments may have different ways of
performing the same kind of task. The developer cannot
be expected to know how various tasks are to be
performed in different environments. This places a
bottleneck on the rapid development and prototyping of
new services and applications in these environments.

Our notion of a pervasive computing environment is a
physical space that has been enhanced with a large
number of digital devices such as various sensors,
computers and actuators. We call this space an Active
Space. In previous research, we developed a middleware,
Gaia [1], for programming Active Spaces. We have
deployed Active Spaces in a number of rooms in our
Computer Science building. One of the problems we came
across was that many of our programs were not portable
across different spaces. Developers, often, had to
customize their applications and services for new spaces
because different spaces had different kinds of resources.
Besides, different spaces had different policies regarding
the usage of resources for performing various kinds of
tasks. Developers had to be aware of these policies while
developing their services and applications. Finally,
because Active Spaces are characterized by a large
number of different types of services and applications,
there are often different ways of performing the same task.
However, some ways are better than others depending on
the current context, resources available and user
preferences. Hence, programs in Active Spaces need to
choose the “best” way of performing a task from the
various choices available. The developer, though, should
not be burdened with this task. Thus, we came to the
conclusion that it is necessary to provide developers with
a higher level of abstraction while programming these

! This research is supported by a grant from the National Science Foundation, NSF CCR 0086094 ITR and NSF 99-72884 EQ.

spaces, so that they need not be aware of the specific
resources available, context, policies and user preferences
while developing their programs. In particular, we need
high-level abstractions for referring to Active Space
entities and operations.

On the basis of these requirements, we have
developed a new high-level programming model called
Olympus. Olympus allows developers to specify Active
Space entities at an abstract, high level. Active Space
entities include services, applications, devices, physical
objects, locations and wusers. Developers using the
Olympus programming model refer to these entities as
virtual entities in their programs. The Olympus model is
associated with a framework, which takes care of
resolving these virtual entities into actual Active Space
entities based on constraints specified by the developer,
the resources available in the current space, space-level
policies and the current context of the space. The
framework makes use of ontological hierarchies and
descriptions of entities to allow semantic discovery of
appropriate entities. The ontological hierarchies of entities
also aids the development process since developers can
now browse the ontologies to see what kinds of entities
are available and what kinds of constraints they can
specify on these entities. Finally, the framework makes
use of a utility model in order to choose the “best” entity
available in a space for performing a certain kind of task,
in case there are many choices.

A key concept employed in the discovery process is
the separation of class and instance discovery. This means
that in order to choose a suitable entity, the Olympus
framework first discovers possible classes of entities that
satisfy all the requirements. Then, it discovers instances of
these classes that satisfy instance-level requirements.
Finally, it ranks the instances based on a utility function
and chooses the “best” one(s). Separating class and
instance discovery enables a more flexible and powerful
discovery process since even entities of classes that are
highly different from the class specified by the developer
can be discovered and used.

The other main feature of Olympus is that common
Active Space operations can also be specified at a high-
level. Common Active Space operations include starting,
stopping and moving components; notifying users; taking
actions when users enter or exit a space, etc. These
operations are modeled as operators in the Olympus
programming model. Developers do not have to worry
about how these operations are performed in the space in
which their program is deployed. The Olympus
framework determines how these operators are executed
using various services present in the space.

We have developed the Olympus programming model
as part of our Gaia middleware. Currently, the model is
implemented in C++. Developers can specify virtual
entities and Active Space operators in their C++ programs

and execute them in different spaces. Table 1 shows a
sample program developed using the model. In the
program, the developer just says that he wants to start a
slideshow application with the file Olympus.ppt in the
space where the user Sal is located. The framework takes
care of choosing exactly how to start the application. It
chooses which components to use: for example, MS
PowerPoint could be used, or Acrobat Reader, in case
there are no Windows machines available. It takes care of
converting data formats (from ppt to pdf). It chooses the
“best” devices to display the slideshow in case many are
available. It also decides the “best’ way of controlling the
slideshow (e.g. using a GUI or by using voice commands).
These decisions are made based on developer-specified
constraints, policies and user preferences.
Table 1. Sample Olympus program

ActiveSpace as1; //refers to a virtual active space entity

as1.hasProp(“containsPerson”,”Sal”);
asl.instantiate(); /*as1 now refers to the Active Space
where the user Sal is located */

Application app1; //refers to a virtual application entity

app1.hasProp(“class”,”Slideshow”);

app1.hasProp(“file”,”Olympus.ppt”);

app1.start(as1); /*app1 is started in Active Space as1
in the “best” possible configuration */

The main contribution of the paper is the proposal of a
high-level programming model that allows developers to
program Active Spaces without worrying about how
common operations are implemented in the space and
which are the best resources for executing a task. This
enables rapid prototyping and testing of different
applications. Some of the key features of this model are:

1. Ontologies for specifying hierarchies of different kinds
of entities and for specifying entity properties. Developers
can browse the ontologies to discover classes of entities
that can be used in his programs.

2. A novel semantic matching algorithm based on
ontological hierarchies for discovering appropriate classes
of entities for performing a certain task.

3. Context-aware policies and rules for choosing
appropriate classes and instances of entities.

4. A multi-dimensional utility function for choosing the
“best” instances of entities for performing a certain task.

5. Proposal of a basic set of high-level operators for
programming pervasive computing environments.

In the rest of the paper, we describe the details of
Olympus. We first introduce Active Spaces and our
middleware, Gaia. Section 3 gives an overview of the
elements of the Olympus Programming Model. Section 4
goes into the details of the discovery process. Section 5
describes the high-level operators in our model. Section 6
has some example programs. Next we describe the
implementation details and our experiences in using this

model. Finally, we conclude with a discussion of related
work and future work.

2. Active Spaces and Gaia

An Active Space is a physically-bounded collection,
such as a room, of devices, objects, users, services and
applications. A meta-operating system, called Gaia [1],
manages resources of an active space. Gaia contains a set
of core services that manages the resource collection and
provides a programming interface to application
developers. It supports an application framework that
decomposes an active space application into smaller
components that can be migrated across various devices in
an active space and adapted to the requirements of a
space. Gaia also has a context infrastructure [2] that
allows obtaining the current context of the space. Gaia
uses CORBA [3] to enable distributed computing.

3. The Olympus Programming Model

A programming model is defined as an abstract
machine, providing certain data types and operations to
the programming level above, and requiring
implementations for each of these operations on all of the
architectures below [4]. Active spaces differ in the
resources they provide, the services they support and even
in the implementations of these services. Therefore, each
active space can be viewed as a different architecture.

3.1 Virtual Entities

Olympus allows a user to program an Active Space in
terms of virtual entities. Virtual entities are essentially
variables that have not yet been instantiated. They are
associated with a class defined in an ontology.
Developers can specify certain properties that must be
satisfied by the concrete entity, and the Olympus
framework takes care of discovering appropriate entities
that satisfy developer constraints as well as other
constraints in ontologies and user and space policies.

There are eight basic types of entities in our model:
Application, ApplicationComponent, Device, Service,
Person, PhysicalObject, Location and ActiveSpace.
Entities are treated as first-class objects in the model —
that is they can be stored in variables, used in expressions
and passed as parameters to functions.

For example, the following piece of code represents a
virtual application component entity that can display a
slideshow on a Linux machine.
ApplicationComponent app1; //app1 is the virtual entity
app1.hasProp(“class”,”SlideShow”);
app1.hasProp(“requiresOS”,"Linux”);

Depending on the components available in the space,
the policies of the space and user preferences, the virtual
entity appl may get instantiated with either Acrobat
Reader or Ghostscript. The developer though, does not
have to worry about the actual instance the entity gets
instantiated with.

3.2 High-level Operators

The Olympus framework implements some commonly
used Active Spaces operations. These operations are
specified as operators in Olympus. Developers can use
these operators in their high-level programs. The Olympus
framework takes care of performing the operations by
invoking appropriate services present in the space. The
operator set of an Active Space is analogous to the
instruction set of a computer, where we consider an
Active Space to be similar to a distributed computer.

As an example, different spaces may have different
ways of checking whether a user is in the space or not.
Some spaces require contacting the Authentication
Service to see if the user has authenticated himself using
some mechanism to the space. Other spaces may have a
Location Services that detect the user’s presence using a
device he carries. The Olympus model hides these details
from the developer and allows him to check the user’s
presence using the operator ‘in’. The operators are
executed by using libraries implementing the operators.
Different libraries are used in different spaces.

4. The Discovery Process

An important element of the programming model is
choosing appropriate values for the virtual entities. There
are various types of constraints that need to be satisfied
while choosing appropriate instances of the virtual
entities. These are:

1. Constraints on the value of the variable specified by
the application developer in the high-level program

2. Constraints listed in ontologies

3. Policies specified by a Space Administrator for the
current space

4. User policies for the user using the program

Fig 1 provides an overview of the steps involved in
discovering appropriate entities. The discovery process
involves the following steps:

1. Discovering suitable classes of entities: The
framework queries an Ontology Server in the space for
classes of entities that are semantically similar to the
virtual entity class. The Ontology Server returns an
ordered list of classes that are semantically similar to the
variable class. It uses ontologies specified in OWL [5] for
determining semantic similarity.

Ontologies
in OWL

User and
space policies

Context

Ontology Server Infrastructure

Space Repository

specifying
utility of
different enities

Context
Infrastructure

Olympus Framework J JJ
Virtual Entity ~ > < <L
Description + . - Lo "
) |\ Checkingclass- | . || Checking instance- Ranking instances Best Entity
D;V::;IZZF Class Discovery) | e) constraints |——| "stance Discovery [i) constraints i based on utility Instances

constraints 9

15

AN

Class-level
Policies in
Prolog

Instance-
level
Policies in
Prolos

Figure 1. Discovery Process

2. Checking class-level constraints on the similar
classes: The framework filters the list of classes returned
by the Ontology Server depending on whether they satisfy
class-level constraints. These class-level constraints may
be specified in ontologies, policies or by the developer
and may be context-sensitive. A Prolog reasoning engine
is used to check the satisfaction of constraints. The Gaia
Context Infrastructure is used to obtain the current context
of the space.

3. Discovering entity instances in the current space:
For each remaining class of entity, the framework queries
the Space Repository to get instances of the classes that
are available in the space. The Space Repository is a
database containing information about all instances of
devices, application components, services and users in the
Active Space.

4. Checking instance-level constraints on the similar
classes: For each instance returned, the framework checks
if it satisfies instance-level constraints specified in the
program or in the policies. The final list of instances
represents possible values that the virtual entity can take.

5. Choosing the best among the possible instances: If
only one or a few of all possible instance values are to be
assigned to the virtual entity variable, then the framework
chooses the most appropriate instance(s) based on a utility
function.

In the following subsections, we shall describe the
different parts of the discovery process in greater detail.

4.1 Ontological hierarchies of entities

Each type of entity is associated with a hierarchy
defined in an ontology. We briefly describe the
ApplicationComponent and Device hierarchies in order to
illustrate the different kinds of hierarchies.

4.1.1 ApplicationComponent hierarchy. Applications in
Gaia are built using an extension of the Model-View-
Controller framework [6, 7]. Applications are made up of
five components: model, presentation (generalization of
view), adapter, controller and coordinator. The framework
is shown in Figure 2. The ApplicationComponent entity
type refers to these five components, while the
Application entity type is a composite type referring to the
set of the components belonging to a single application.

The model implements the logic of the application and
exports an interface to access and manage the
application’s state. Controllers act as input interfaces to
the application and presentations as output interfaces. The
adapter maps controller inputs into method calls on the
model. The coordinator manages the composition of the
other components of the framework. For example, in a
slideshow application, the model (a PPTModel
component) maintains the name of the file and the current
slide number; the presentation (a PPTViewer component)
actually renders the slides; and the controller (a
SlideController component) allows navigating through the
slides.

il_‘

Adapter Model
L| (PPTAdapter) (PPTModel)

T T

1 1
Controller Presentation
1| (SlideController) (PPTViewer)

Coordinator

Figure 2. Application Framework and slide-

show application components (in parentheses)
Fig 3 shows a portion of the hierarchy under
ApplicationComponent describing different kinds of
Presentation. The hierarchy, for instance, specifies two
subclasses of “Presentation” — “Visual Presentation” and
“Audio Presentation”. It also further classifies “Visual
Presentation” as “Web Browser”, “Image Viewer”,
“SlideShow” and “Video”. Ontologies allow a class to

have multiple parents —so “Video” is a subclass of both
“Visual Presentation” and “Audio Presentation”. This
hierarchy helps in identifying how similar any two entities
are. The semantic similarity of two entities can be defined
in terms of where they are placed relative to one another
in the hierarchy. Besides, this hierarchy offers all the
advantages of a class hierarchy in an object-oriented
language — for example, children entities automatically

inherit the properties and constraints of the parent entities.
Entity

Service Application Device
Component
|

‘Coordinator‘ ‘ Model ‘ ‘Presenlation‘ ‘ Controller ‘

Visual
Presentation

7~
‘ SlideShow ‘
‘ Video ‘ ‘ Speech ‘
Web Browser yay
ImageViewer
GaiaSpeech
Engine

‘ IntenetExplorer ‘ f
Paint Music
PowerPoint
Viewer
S
GhostScript

WindowsMedi

AcrobatReader Player

Figure 3. Presentation hierarchy in Gaia

Audio
Presentation

4.1.2 Device Hierarchy. Similar to the
ApplicationComponent hierarchy, we have defined a
hierarchy of the different kinds of devices available in our
Active Space. Fig 4 shows a portion of this hierarchy.

Actuator

I
Input Sensor
Device

.
:

Audio Input
z<

Audio
Keyboard Output
Mouse Input Z~
7=

Plasma

Laptop J

| 1
Tablet PC PDA

Figure 4. Device hierarchy in Gaia

Desktop

4.1.2 Other Entity Type Hierarchies. Other entity types
are also associated with hierarchies. The Person type is
associated with a hierarchy representing roles of users.
The Location type is associated with a spatial hierarchy
consisting of buildings, floors, rooms, etc. The
ActiveSpace hierarchy builds a hierarchy of spaces. The
Service hierarchy classifies services based on the tasks
they perform. Finally, the PhysicalObject hierarchy
classified physical objects based on their functionality.

4.2 Ontological Description of entities

Each class of entity in an Active Space is associated
with a description in OWL, one of the standard formats of
the Semantic Web. The OWL description specifies the
properties of the entity class. For example, all application
component classes have an OWL description that
describes various semantic properties of the component
such as the tasks it can perform, the classes of devices that
can host it and the data-formats it can understand.

The ontology defines relations between different
concepts. One of the relations is the requiresDevice
relationship which maps application components to a
Boolean expression on devices. For example,

requiresDevice(PowerPointViewer) = PlasmaScreen v
Desktop v Laptop v Tablet PC

This means that the PowerPointViewer can only run on
a PlasmaScreen, Tablet PC or a Desktop. Similarly, the
GaiaSpeechRecognizer class in the controller hierarchy
maps to the Microphone class in the device hierarchy.

Another relation, requiresOS, maps application
components to operating systems. E.g.

requiresOS(PowerPointViewer) = Windows

The ontologies for an Active Space are initially created
by an administrator of the space. As new applications,
devices and other entities are added to the space, the
ontologies are extended by the administrator or
application developer to include descriptions of the new
entities.

4.3 Developer-specified constraints

Developers can specify constraints that the classes and
instances of the virtual entities in their program must
satisfy. The constraints take the form of triples (i.e.
<entity> <property> <value>). Depending on the kind of
property, the constraints may be on the classes of entities
or on the instances. Developers can browse the ontologies
to discover which properties can be specified for different
kinds of entities.

For example, if the developer wishes to migrate a
presentation component to the device closest to the user as
he moves around, he could specify constraints on the
device to be chosen in the following way:

Device device1;
device1.hasProp(“class”,”VisualOutput”);
device1.hasProp(“location”,user1.getProp(“location”,”room

Y.

de'vice1 .hasProp(“resolution”,”800*600");
device1.hasMetric(“distance”, user1, "ascending”);

The above constraints specify that the device chosen to
migrate the presentation component must be of class
VisualOutput (or be one of its subclasses), must be

located in the same room as the user and must support a
display resolution of 800*600 pixels. If there are many
candidate devices available, then the metric to use in order
to choose the “best” one is based on location. In this case,
the devices are ranked in ascending order of distance
between the device and the user (lower ranked devices
have higher preference).

4.4 Semantic Matching of classes

In order to allow the discovery of a larger set of classes
that can satisfy the developer’s requirements, we have
developed the notion of semantic similarity of entity
classes. This notion is based on the principle that one
entity can be substituted by another if they are
semantically similar. For example, in the case of
Application Components, the semantics of an application
component is based on the tasks it allows the user to
perform. So, an application component can be substituted
by another component if it allows the user to perform the
same tasks in some manner.

For instance, if a developer specifies, in his program,
that he needs a PowerPoint View to display slides, then
the Olympus framework infers that PowerPoint View can
be replaced by an Acrobat Reader view or by a Speech
Engine that reads the text in the slides as speech.
However, Acrobat Reader is semantically closer to
PowerPoint (since it also uses a visual medium and it can
also display pictures), and the Speech Engine is a less than
perfect substitution. Hence, if it is not possible to display
PowerPoint in a certain room (because none of the
displays run Windows), then it is better to replace it with
Acrobat Reader than with the Speech Engine. However, if
the room has no displays or projectors available or if there
is a blind person in the audience, then the Speech Engine
can be used if there is a speaker in the room.

The process of finding semantically similar concepts
makes use of the ontological hierarchy. We implemented
an adapted version of the algorithms presented in [8, 9]. In
our algorithm, for any two concepts CI and C2, CI
matches C2 with a certain similarity-level if:

e (/] is equivalent to C2, with similarity-level 0

e (] is a sub-concept of C2, with similarity-level 1

e (1 is a super-concept of C2 or C/ is a sub-concept of a
super-concept of C2 whose intersection with C2 is
satisfiable, with similarity-level i+2, where i is the number
of nodes in the path in the ontology hierarchy graph from
C2 to the relevant super-concept of C2.

The first set includes classes that are effectively the
same (but may be described using different terms). For
example, the same component may be described as
PowerPointViewer in one space and as “PPT” in another
space. The ontologies have axioms declaring certain
concepts to be equivalent. The second set of classes

includes those that are more specific than the query class —
i.e. they satisfy all the properties of the query class. The
third set includes those classes that are ancestors or
children of ancestors of the query class. We just take the
leaf nodes, since these are the most concrete classes.

As an example, a query for Presentation components
that are semantically similar to PowerPointViewer (in Fig
3) gives the following classes:

e Similarity-level 0 : PowerPointViewer
{since PowerPointViewer is trivially similar to itself}
e Similarity-level 1: None
{since PowerPointViewer has no subclasses}
e Similarity-level 2: AcrobatReader, GhostScript
o Similarity-level 3: WindowsMediaPlayer,
InternetExplorer

e Similarity-level 4: WinAmp, GaiaSpeechEngine

We limit the search to “Presentation” and its
subclasses, since we are interested in Presentations only.
We, thus, infer that AcrobatReader and GhostScript are
closest, semantically, to PowerPointViewer. Hence, if we
find transcoders from the data-formats understood by
PowerPointViewer (i.e. ppt files) to the formats
understood by one of these two (i.e. pdf or ps files), we
could potentially substitute PowerPointViewer by
AcrobatReader or GhostScript. The next closest are
InternetExplorer, Paint and WindowsMediaPlayer. So, if
AcrobatReader and GhostScript are unusable for some
reason, we can look for transcoders from ppt to html, an
image file or a media file.

The inferring of semantically similar classes of entities
that can satisfy developer requirements allows a more
flexible and powerful discovery process. It allows Active
Space programs to adapt to the resources available in the
space, even if they are vastly different from what the
developer had in mind.

Paint,

4.5 Space-level Policies

Space-level policies are written by the administrator of
the space. These policies are written in the form of rules in
Prolog. The Prolog rules specify constraints on the classes
and instances of entities allowed for performing certain
kinds of tasks. These rules are context-sensitive as well.

An example of a class-level constraint is that no Audio
Presentation application component should be used to
notify a user in case he is in a meeting. This rule is
expressed as:
disallow(Presentation, notify, User) :-

subclass(Presentation, audiopresentation),
activity(User, meeting).

Similarly, policies can instance-level
constraints as well. For example,
disallow(Device, display, slideshow) :-

runningVisualComponent(Display).

specify

The above rule says that a certain Device instance
should not be used to display slides if it is already being
used to display some other visual component. Other rules
and ontologies define which components are visual
components. The Prolog reasoner is initialized with the
state and context of the environment (such as the
machines in it and their characteristics and what
components they are currently hosting). The rules can also
be access control rules that specify which users (specified
in terms of roles) have access to a certain resource in a
certain context.

4.6 Utility Function

The Olympus framework employs a multi-dimensional
utility function in order to choose the best entity instance
to use for performing a certain kind of task. There are four
basic dimensions of utility:

1. Location of the entity (eg. nearer devices may be
preferred to farther ones),

2. Tasks supported by the entity. This is based on the
notion of semantic similarity of the entity to the class
specified by the developer.

3. State of the entity. For example, devices or services
with lower loads may be preferred over highly loaded
devices and services.

4. Context of the space. For example, depending on the
people in the room and the current activity, a user may
prefer a different device or application for receiving
notifications.

Some of the dimensions (like distance based on
location) are quantitative, and allow comparing different
entities to see which is better. Other dimensions (like
context-based preferences) are qualitative and require the
developer, the user or the space administrator to specify,
in their policies, which entities are better than others in
different contexts. These policies specify a partial order of
the utility of entities along a dimension and thus allow
comparing entities on that dimension.

Entities can have different utilities across different
dimensions. A particular entity may be better than others
in one dimension, but may be worse in other dimensions.

Our view is that it is not possible compare entities across
dimensions. Hence, in order to rank all candidate entities
for choosing the best one, one of the dimensions must be
chosen as the primary one. The primary dimension may be
specified by the developer in the program or it may be
specified in the space-level polices or in the user
preferences. Just as in the case of constraints, the
developer can specify how utility is to be defined for the
choice of variable values. Also, space and user policies
can specify the metric for utility for different kinds of
variables in different contexts.

5. High-level Operators

We have identified a number of high-level operators
for Active Spaces. Operators act on a target entity and can
have zero or more arguments. Tables 2 and 3 list some
operators with 0 and 1 arguments. Table 4 lists some
event-based operators that generate events when the
associated condition becomes true.

The set of operators that we have identified is not
exhaustive but is sufficient to express many common
Active Space behaviors. The set of operators is extensible
and is also represented in the ontologies. The operators
that have been listed in this paper are only the operators of
the top-level types of entity (like service, application,
device, etc.). Different subclasses of these entity types can
define more specific operators. For example, Slideshow
applications can define operators for navigating slides.

All Active Spaces that can be programmed using the
Olympus model must have an implementation of these
operators, though the operators may be implemented
differently in different spaces. The Olympus framework
binds with the appropriate implementation of these
operators and executes them whenever these operators are
invoked in a high-level program.

One of the broader goals of the Olympus model is to
identify different kinds of entities and operators associated
with them that may form a part of a standard for pervasive
computing environments. Such a standard would allow the
same program to run unchanged in different environments.

Table 2. Operators with zero arguments for Active Spaces

Operator Target Entity (Entity Type) Behavior
stop Service/ Application /ApplicationComponent Stop service or application
saveState Application / ApplicationComponent Save state of target
suspend Application / ApplicationComponent Suspend target
resume Application / ApplicationComponent Resume target
on Device Turn device on
off Device Turn device off
start Active Space Start default applications and services in Active
Space
stop Active Space Stop applications and services in an Active Space
name Service/Application/ ApplicationComponent/ Entity name
Device/PhysicalObject/Active Space

Table 3. Operators with one argument for Active Spaces

Operator Target Entity Argument Behavior

start Application / Device/Active Space Starts component on appropriate
ApplicationComponent device(s) or in space

resume Application / Device/Active Space Resumes suspended component on
ApplicationComponent appropriate device(s) or in space

in Service/Application / Device/Location/ Active | Determine containment of
ApplicationComponent/ Space target entity in argument entity
Device/Person/
PhysicalObject/Location /Active
Space

migrate Service/Application / Device/Active Space Migrate target entity to argument
ApplicationComponent entity

deploy _in Service/Application / Active Space Deploy target in a space
ApplicationComponent

notify Character string Person Send message to person

distance Device/Person/PhysicalObject/ Device/Person/ Return distance between target and
Location/Active Space Object/Location/ Active argument

Space

Belongsto Application/Service/Device/ Person Check if target is owned by argument

Object
Table 4. Event operators for Active Spaces
Operator Target Entity Argument Behavior
Enter Person Location/Active Space Generate an event when Person
enters argument
Exit Person Location/Active Space Generate an event when Person exits
argument

6. Example Programs

Programs developed on the Olympus model consist of two
main segments. In the first segment, virtual entities are
declared. The developer specifies the type of the entity
and its properties or constraints. He, then, calls an
instantiate method on the entity to ask the framework to
discover appropriate instances. Developers have the
choice of either getting all instances of the entity instances
that satisfy the constraints or the “best” one according to a
utility function specified by the developer or by policies.

If the entity is declared as a list, then the framework
instantiates the virtual entity with a list of all satisfying
instances, else it chooses the best instance for instantiating
the entity.

In the second segment, developers can use high-level
operators on the entities. In case the framework returns a
list of satisfying instances, the developer can iterate
through the list and perform operations on instances.
Tables 5 and 6 present some sample Active Space
programs developed using the Olympus programming
model.

Table 5. Sample Program to turn off all lights in a floor

DeviceList light;

/*Developer-specified property constraints*/

/*The declaration is for a List of Devices, which means that all devices that
satisfy subsequently declared properties will be part of the list */

light.hasProp(“class”,”Light”); /*light should be of the “Light” class in the ontology or a subclass of it*/
light.hasProp(“location”, “SiebelCenter/3”); /*light should be located in the 3’rd floor of the
Siebel Center building™*/
light.instantiate(); /*this statement prompts the Olympus framework to discover all appropriate
devices that satisfy the above constraints as well as other policies*/

iterator lightlter = light.iterator();
while (lightiter.hasNext()) {
Device lightl;
light1 = lightIter.next();
light1.on();

Table 6. Start all of Bob’s suspended applications in the current active space where he is located

Person userl;
ActiveSpace asl;

/*Virtual person entity*/

userl.hasProp(“name”,”Bob”);
asl.hasProp(“containsPerson”,userl);
userl.instantiate();
asl.instantiate();

ApplicationList app;
app.hasProperty(“owner”,user1);
app.hasProperty(“state”,”’suspended”);

app.instantiate();

iterator applter = app.iterator();
while (appiter.hasNext()) {
Application app1;
appl = applter.next();
appl.resume(as);

}

/*Virtual active space entity*/

/*userl is instantiated with a user whose name is Bob*/
/*asl is instantiated with the active space that contains Bob*/

/*List of virtual application entities*/

/*app is instantiated with a list of applications whose owner is userl (Bob) and
which are in a suspended state*/

/*the high-level resume operator takes care of discovering the best devices in the Active Space on which to
resume the model, presentation, controller, adapter and coordinator components of the Application. It then
starts the components on those devices. Here, the dimension of utility to use for finding the “best”
components and devices is defined by space-level policies or user preferences*/

7. Implementation and Experiences

We have implemented the Olympus programming
framework as part of Gaia middleware.. Operators in the
language are implemented as libraries. Policies are
specified in XSB Prolog [10]. Ontologies in OWL were
developed using Protégé [11]. A Protégé plugin also
offers web-based browsing of ontologies. This allows
developers to look up various concepts and properties
while developing their programs. Location-based
reasoning, such as calculation of distance between two
entities is done using the Gaia Location Middleware [12].

We have used the Olympus framework to develop a
number of programs for Active Spaces. We found the
framework did speed up development time since the
discovery of appropriate entities and common operations
were abstracted away from the developer. Programs
developed using this framework were also more portable
since they did not rely on specific resources available in
or configurations of Active Spaces. Hence, we were able
to deploy these programs rapidly in different spaces in our
Computer Science building.

The use of ontologies greatly simplified development
since developers were now aware of the different kinds of
entities and their properties. The framework, though, is
based on the assumption that all Active Spaces that use
the framework share a common ontology. If a new space

that uses a different ontology needs to be integrated, then
translations or mappings have to be specified between the
different ontologies.

Finally, although the framework does simplify the task
of the developer, it takes away some control from the
hands of the end-user. Many configurations decisions are
made automatically, although wuser policies and
preferences are taken into account. We are working on
better interfaces that allow end-users to interact with the
decision making process of the Olympus framework.

8. Related Work

Various programming models have been proposed for
pervasive computing environments. The task-computing
model [13] allows a user to specify a behavior as a set of
tasks that need to be completed using service descriptions.
The system determines the way the tasks are to be
composed. It, however, does not have a utility model for
choosing the best way of performing tasks. It also does not
use policies to guide the execution of tasks. The operator
graph model [14] uses a programming model where
services to be composed are specified as descriptions and
interactions among services are defined using operators. It
also does not have any mechanisms for comparing
different ways of composing the services.

Various discovery mechanisms such as Jini Lookup,
the CORBA Trader, UDDI, etc have been used for

discovering entities that satisfy certain constraints.
However, most of these mechanisms specify constraints
based on name-value pairs. They don’t have the notion of
semantic similarity of classes. The discovery process is
also not integrated with policies. Also, none of them make
use of a flexible utility function for choosing “best”
candidates.

9. Conclusion and Future Work

In this paper, we have presented a high-level
programming framework for pervasive computing
environments. The framework relieves developers from
the task of discovering appropriate entities for performing
a task. It also provides developers with abstractions for
common Active Space operations. Finally, it provides a
way of integrating policies and a utility model into the
discovery process.

In the future, we plan to implement a version of the
framework as a scripting language as well. This would
allow developers to write scripts quickly for performing
various tasks and test time immediately without having to
compile them. In our current prototype, administrators,
developers and users have to specify policies in Prolog.
We are looking at other ways for specifying rules and
policies. Another area of interest is more expressive utility
functions. In particular, we would like to experiment with
attaching weights to different utility dimensions, so that
the net utility of an instance is a linear combination of the
utility in different dimension. We are also working on
using machine learning approaches to learn certain kinds
of rules, especially user preferences such which kinds of
devices and applications they prefer to use for different
kinds of tasks. Finally, we are also exploring different
ways of automatically composing several operators to
achieve a high-level goal. One promising approach in this
direction is the Al planning.

10. References

[1] M. Roman, C. K. Hess, R. Cerqueira, R. H. Campbell,
and K. Narhstedt, "Gaia: A Middleware Infrastructure to
Enable Active Spaces," IEEE Pervasive Computing
Magazine, vol. 1, pp. 74-83, 2002.

[2] A. Ranganathan and R. H. Campbell, "A Middleware
for Context-Aware Agents in Ubiquitous Computing
Environments," In ACM/IFIP/USENIX International
Middleware Conference, Rio de Janeiro, Brazil, Jun 16-
20,2003

[3] OMG, "CORBA, Architecture and Specification,"
Common Object Request Broker Architecture (CORBA)
1998.

[4] D. B. Skillicorn and D. Talia, "Models and languages
for parallel computation," ACM Comput. Surv., vol. 30,
pp- 123-169, 1998.

[5] M. Dean, D. Connolly, F. v. Harmelen, J. Hendler, I.
Horrocks, D. L. McGuinness, P. F. Patel-Schneider, and
L. A. Stein, "OWL web ontology language 1.0 reference,"
http://www.w3.org/TR/owl-ref/, 2002.

[6] G. E. Krasner and S. T. Pope, "A Description of the
Model-View-Controller User Interface Paradigm in the
Smalltalk-80 System," Journal of Object Oriented
Programming, vol. 1, pp. 26-49, 1988.

[7] M. Roman, H. Ho, and R. H. Campbell, "Application
Mobility in Active Spaces," presented at 1st International
Conference on Mobile and Ubiquitous Multimedia, Oulu,
Finland, 2002.

[8] L. Li and I. Horrocks, "A software framework for
matchmaking based on semantic web technology,"
presented at WWW 2003, 2003.

[9] J. Gonzalez-Castillo and e. al., "Description Logics for
Matchmaking Services," HP Laboratories Bristol, Bristol
HPL-2001-265 2002.

[10] "XSB Prolog." http://xsb.sourceforge.net.

[11] N. F. Noy, M. Sintek, S. Decker, M. Crubezy, R. W.
Fergerson, and M. A. Musen, "Creating Semantic Web
Contents with Protege-2000," [EEE Intelligent Systems,
vol. 16, pp. 60-71, 2001.

[12] A. Ranganathan, J. Al-Muhtadi, S. Chetan, R.
Campbell, and M. D. Mickunas, "MiddleWhere: A
Middleware for Location Awareness in Ubiquitous
Computing Applications," In ACM/IFIP/USENIX 5'th
International Middleware Conference, Toronto, Canada,
Oct 18-22, 2004

[13] Z. Song, Y. Labrou, and R. Masuoka, "Dynamic
Service Discovery and Management in Task Computing,"
presented at First Annual International Conference on
Mobile and Ubiquitous Systems: Networking and Services
(MobiQuitous'04), 2004.

[14] G. Chen, M. Li, and D. Kotz, "Design and
Implementation of a Large-Scale Context Fusion
Network," presented at First Annual International
Conference on Mobile and Ubiquitous Systems:
Networking and Services (MobiQuitous'04), 2004.

