My Dream of Jini*

Fabio Kon Jalal Al-Muhtadi

Roy H. Campbell

M. Dennis Mickunas

Department of Computer Science
University of Illinois at Urbana-Champaign
{f-kon,almuhtad,roy,mickunas}@cs.uiuc.edu
http://choices.cs.uiuc.edu/2k

1 Prelude

Jini provides a set of protocols, conventions, services
and facilities to handle dynamic distributed systems.
It enables the construction of dynamic distributed
object systems and software drivers for network plug-
and-play devices. Jini provides protocols to allow
services to join a network and discover what services
are available in this network. It also defines standard
service interfaces for leasing, transactions, and events
[Wal9s].

The introduction of the Jini technology in 1998 was
a very important contribution to the field of dynamic
discovery and ad-hoc networking. It also opened the
eyes of a large number of people to the ideas of ubig-
uitous computing earlier proposed by Mark Weiser
[Wei92].

Although Jini provides the basic tools for the devel-
opment of simple, small-scale networks of objects, it
does not yet provide a powerful and complete solution
to the problem of supporting ubiquitous computing
effectively. The Jini of our dreams would provide ad-
ditional support for (1) dynamic configuration and
adaptation, (2) dynamic resource management, (3)
security and privacy, and (4) scalability and interop-
erability.

2 Dynamic Configuration and
Resource Management

Jini provides some limited support for dynamically
configuring Jini clients by downloading a proxy from
the Lookup server. The proxy is automatically linked
to the client side and is responsible for communica-
tion with the server. Java also provides support for

*This research is supported by the National Science Foun-
dation, grants 98-70736, 99-70139, and ETA99-72884EQ.

dynamic loading class files, which can be retrieved
from locations defined via any URL.

At the moment, dynamic unloading of classes in
Java seems not to work. This makes dynamic recon-
figuration a little tricky, requiring that an extra level
of indirection be added.

We believe that in order to accommodate
component-based applications for the highly-
dynamic environments of the future, system software
must provide powerful mechanisms for automatic
configuration and dynamic reconfiguration. Auto-
matic Configuration [Kon00] refers to applications
that are assembled at runtime by downloading com-
ponents from different network-centric repositories,
taking special care with user preferences, resource
requirements and dynamic resource availability.
Dynamic reconfiguration is important for software
evolution, adaptation to changes in the environment
and for dealing with failures.

Java does a very good job in hiding the details
of the underlying operating system and hardware
platform. This is a wonderful feature, most of the
time. However, there are many cases in which a bet-
ter understanding of the underlying resources would
be desirable. Multimedia and real-time applications,
for example, can benefit from knowing the amount
and type of memory, CPU, and network resources
that are available at runtime. Moreover, some ap-
plications are able to select different algorithms and
policies according to notifications received from the
underlying system. These adaptations are desirable,
in some cases, to improve performance but, in other
cases they may be critical, like in intercontinental
videoconferencing for example.

3 Security and Privacy

Once the devices in a workspace or a household are
automated and connected through a network using
a Jini-like technology, it becomes important to con-
sider security issues such as privacy, authentication,
and access control. In distributed environments se-
curity is critical, as there are more areas that can
be breached. When the distributed system start to
control our homes, security and privacy becomes es-
sential. In such settings, access to some resources
must be restricted, communication links must be se-
cured, and mutual authentication among communi-
cating components is a major requirement. Addi-
tionally, any security mechanism must be tailored to
accommodate the dynamism and agility that are as-
sociated with distributed components, active spaces,
and smart devices.

Unfortunately, the current Jini security model is
limited and incomplete. As it stands today, the Jini
security model is based on JDK 1.2. This security
model does not scale well for distributed environ-
ments and it lacks support for distributed security
services, authentication, and authorization. To com-
pensate for this, a service has to provide its own au-
thentication and authorization model to identify au-
thorized clients.

An ideal security model should help out in provid-
ing security services for various Jini services. For ex-
ample, controlling access to specific Lookup services
and restricting the distribution of some services or
“group” of services. To meet the objectives above,
we need a security model that is based on a widely
available security infrastructure, granting us flexibil-
ity, scalability, and the ability to achieve secure in-
teroperation between different devices regardless of
their platforms and programming environments.

SESAME [VGV97] is an extension of Kerberos that
provides support for authentication using digital sig-
natures, preventing off-line dictionary attacks, han-
dling of access control privileges for users, and differ-
ent key management and distribution schemes. Tiny
SESAME [AMAMCO0] is a subset of SESAME that
supports authentication, simple encryption, integrity
checks and RBAC (Role-Based Access Control). It is
a lightweight component-based security mechanism.
Protocols and security services can be loaded and
unloaded dynamically, allowing the security model
to adapt to environments with scarce resources and
expand once resource become available. In our se-
curity research, we constructed a secure active home
environment by combining Java with Tiny SESAME.

4 Scalability and
Interoperability

Jini has two problems in regard to scalability. First,
it is not yet clear how the Jini discovery mechanisms
can be efficiently deployed in large-scale systems com-
posed of hundreds of local networks and thousands or
millions of devices. Second, Java does not yet scale
down to PDAs and embedded devices. And it is not
a matter of saying “memory will get cheaper; in the
future, every device will have dozens of megabytes
of memory”. Ubiquitous computing comprises not
only mobile computers and PDAs but also books,
soda cans, and paper clips with embedded systems
on them. Devices with limited memory, CPU, and
batteries will become more common, not less com-
mon.

It seems, then, that the world of computing will
not move towards 100% pure Java solutions for ev-
erything. Thus, it is important to investigate mecha-
nisms that facilitate the interoperability among rad-
ically different computing devices. CORBA seems
to be a good solution since it provides an elegant
language-independent distributed object model that
can scale up to millions of objects and down to PDAs
and embedded systems [RMKCO00]. In addition, the
CORBA trader, for example, provides a much richer
query mechanism than the Jini Lookup service.

Since Java 1.3 comes with CORBA support, inter-
operability with small devices could be achieved by
defining OMG IDL interfaces for the Jini services and
developing Jini to CORBA bridges in Java. In this
scenario, devices could choose to communicate with
the Jini services using either Java RMI or CORBA.
Scaling up the lookup and discovery mechanisms,
however, is still an open problem.

5 Conclusion

Jini is, perhaps, the most advanced implementa-
tion of a technology supporting dynamic ad-hoc net-
working for ubiquitous computing. However, it still
lacks a number of features that are important for its
widespread use. Some of these issues will have to
be added to Jini itself; others can be provided as
separate services in the system. The Java/Jini com-
munity must investigate the implementation of these
missing features in a way that leaves space for diver-
sity but that guarantees interoperability.

References

[AMAMCO00] J. Al-Muhtadi, M. Anand, D. Micku-

[Kon00]

[RMKCO0]

[VGV97]

[Wal9g]

[Wei92]

nas, and R. Campbell. Secure Smart
Homes using Jini and SESAME. In
Proceedings of the 16th ACSA/ACM
Annual Computer Security Applica-
tions Conference, 2000.

Fabio Kon. Automatic Configuration
of Component-Based Distributed Sys-
tems. PhD thesis, Department of Com-
puter Science, University of Illinois at
Urbana-Champaign, May 2000.

Manuel Romén, Dennis Mickunas,
Fabio Kon, and Roy H. Campbell.
LegORB and Ubiquitous CORBA. In
Proceedings of the IFIP/ACM Mid-
dleware’2000 Workshop on Reflective
Middleware, pages 1-2, Palisades, NY,
April 2000.

M. Vandenwauver, R. Govaerts, and
J. Vandewalle. Overview of Au-
thentication Protocols: Kerberos and
SESAME. In Proceedings of the 31st
Annual IEEE Carnahan Conference on
Security Technology, pages 108-113,
1997.

Jim Waldo. Jini Architec-
ture Overview. Available at
http://java.sun.com/products/
jini/whitepapers, 1998.

Mark Weiser. The Computer for the
21st Century. Scientific American,
265(3):94-104, September 1992.

