
1

Operators of the Temporal Object System and their Implementation

A. Shah1, F. Fotouhi2, W. Grosky2, S. H. Shah Khan1, and J. Al-Muhtadi1

1 Department of Computer Science
King Saud University

P.O. Box 51178. Riyadh, Saudi Arabia

2 Department of Computer Science
Wayne State University

 Detroit, Michigan, 48202, USA

Abstract

 We proposed a Temporal Object System (TOS) which maintains changes to both the

structure and the state of an object in a temporal fashion (Shah, 1992; Fotouhi et al, 1992a;

Fotouhi, et al, 1992b; Fotouhi, et al, 1994). Objects in TOS are referred to as temporal objects

and are allowed to evolve over time. A collection of temporal objects which share the same set

of common properties is grouped into a family. A temporal object that can be defined by using

the local knowledge of a family is referred to as an offstage object (Shah et al, 1993a). We also

discussed the renovations of both temporal complex objects and offstage objects in (Fotouhi et

al, 1992; Shah et al, 1993a; Fotouhi et al, 1994).

 This paper is a continuation of the work reported in (Fotouhi et al, 1994), and now we

report on the operators of the temporal object system (TOS) and their implementation. These

operators are grouped into three different modules of the TOS based on their relevant functions.

These modules are: Object Manager (or Object Module), Family Module, and Root of TOS

(RTOS) Module. The important module is the Object Manager (OM) that consists of basic

operators. The modules provide a facility for defining a simple temporal object and later to add a

stage in the temporal object. The other operators are grouped into the two other modules and are

2

referred to as RTOS module and Family module. We have implemented these operators using

the SELF version 4.0 programming language on a SUN Sparc Workstation running Solaries 2.4.

Key Words: object-oriented databases, temporal database, temporal objects, object manager

1. Introduction
 In most of the existing relational database systems, data objects are stored in a non-

temporal fashion. That is, when the value of an attribute changes, the old value is replaced by the

new value. Thus, only the latest state of an object resides in the database. However, for many

database applications such as Computer-Aided Design/Computer-Aided Manufacturing

(CAD/CAM), Computer Aided Construction (CAC), etc., it is not appropriate to discard old

information. In these cases it is necessary to associate time values with data to indicate the time

for which the data is valid. A time dimension is added to a database either at the attribute level

(Clifford, 1982) or the tuple level (Gadia, 1991) to keep the history of a data object. Such a

database is referred to as a temporal database (Dutta, 1989; Gadia et al, 1991).

 Time in a temporal relational system is modeled as either a time point or a time interval.

Both time models are considered equivalent (Dutta, 89). The value of time associated with a data

object is determined by the system or assigned by the user. If a time value is assigned by the

system, then it is referred to as a physical time such as transaction time, while if it is assigned by

the user, then it is referred to as a logical time such as user-defined time (Ling et al, 1990).

 Relational database and their temporal extensions are suitable for simple record-based

applications, but are not suitable for engineering and other complex database applications due to

their limitations in defining a complex object directly and at one place (Mair, 1986). Several

types of object-oriented databases have been proposed to support the development of these

application systems. In the object-oriented paradigm, an object is defined by two parameters:

structure and state. The structure (SR) of an object provides the structural and behavioral

capabilities to that object, and it is defined by a set of instance variables and methods. The state

(ST) of an object assigns data values to the instance variables of the objects, and the methods

3

operate on them. A set of objects that share the same structure is referred to as a class. An

object-oriented database is a collection of classes which are organized as a directed acyclic graph

(DAG) or a simple directed graph (Kim et al, 1987, Kim, 1990).

 In the existing object-oriented database systems, changes to the state of an object are

maintained via version management (Agrawal et al, 1991; Katz et al, 1986). Also, structural

changes are supported in most of the object-oriented database systems. Such changes to a class

are referred to as schema evolution in the literature (Nguyen et al, 1989; Roddick, 1992). There

are three possible scenarios of a class to change its structure. These are:

(type I) Adding new instance variables and/or methods

(type II) Deleting instance variables and/or methods

(type III) Updating an instance variable and/or a method

For type I changes, there is no loss of knowledge in a class because the previous knowledge of

the class structure is also retained along with the new one. We define knowledge of an object of

a class by the structure of the class. In the TOS environment, we define knowledge of a temporal

object or a stage by the structure, the state, or both. Both (temporal object and stage) are defined

later in this paper. On the other hand, for type II and type III changes, the history of the changes

to a class structure is not readily available, as it is overwritten or deleted in the latest version of

the class structure. Current object-oriented database systems keep only the current version of

each class structure. After any one of the type II or type III changes, it is necessary to reload a

previous version of the database to retrieve any information from a previous version of a class

structure. It is a desirable feature of CAD/CAM, CAC, and other advanced engineering database

applications to keep history of changes to the class structures (Shah et al, 1993). It helps in

designing a new product by using previous products.

 In (Fotouhi et al, 1992a; Fotouhi et al, 1994; Shah, 1992) we introduced a temporal

object-oriented system (TOS) which maintains the history of changes to both the structure and

the state of an object in a consolidated and elegant manner. We associated time (point model) to

4

both the structure and state of an object. Such an object is referred to as a temporal object. A

temporal object evolves over time due to changes to its state, structure, or both. A set of

temporal objects which share a common knowledge (i.e., structure and state) is referred to as a

family. The TOS also facilitates the construction of a complex family which is an aggregation of

temporal objects from various families. The objects in a complex family are referred to as

temporal complex objects (for details see (Fotouhi et al, 1992b and Shah et al, 1993b)). A

complex family increases the knowledge sharing (or reusability) of non-homogeneous temporal

objects and their transportability from one family to another. A temporal object system (TOS) is

therefore a collection of families which are defined at different time instances. The concept of

renovation refreshes the knowledge of temporal complex objects and offstage objects by

replacing their sub-objects and participant objects (they are defined later in Section 2),

respectively, at any time instance.

 In this paper, we extend our work that was reported in (Fotouhi et al, 1994), and define

operators of the TOS. Function of each operator is different such as the creation of simple

families, complex families, simple temporal objects, offstage objects, temporal complex objects,

renovation of objects, and so on. The operators are grouped into the different modules which are

referred to RTOS Module, Family Module, and Object Module (or Object Manager). We have

implemented this module using SELF (version 4.0) programming Language. Currently these

modules are doing basic functions such as the creation of simple families, simple temporal

objects, stages, etc.

 The remainder of this paper is organized as follows: In Section 2, we describe the TOS

and its components. Section 3 gives syntax of the operators of the TOS and their description. In

Section 4, we give the system architecture that implements the operators. We have implemented

the operators in SELF programming language, Section 4 deals with the implementation details.

Finally, in Section 5, we give our concluding remarks and future research directions.

5

2. Temporal Object System (TOS)

 As mentioned earlier, the TOS is a collection of simple and complex families which are

defined at different time instances. A family is a collection of temporal objects, and a temporal

object is a collection of stages. Figure 1 shows a general schema of the TOS, where RTOS

represents the root node of the system with n families, i.e., F1, F2 F3,. . . Fn as its children. These

families are constructed in the TOS at the time instances, t1, t2, . . ., tn, respectively (see Figure

1). The figurative notations which are used in Figure 1 and in other figures are given in

Appendix at the end of the paper.

 In the next section we give a brief overview of the temporal objects which are the

building blocks of the family, and then we discuss the concept of families.

 RTOS

ROF1 ROF2 ROFn

TOn.1 TOn.2

TO1.1

TO1.2 TO2.1

time= t1 time = t2 tome = tn

 F1 F2 Fn

 Figure 1: Schema of a Temporal Object System (TOS)

2.1 Time Dimension in TOS

 A time dimension is associated with the creation of a stage, a temporal object, and a

family in TOS. Time is explicitly defined by the user as an instance variable. While creating a

6

TOS application the data type of the time is defined. The data type of the time should be

mentioned in the creation of all families, temporal objects, and stages in future. The granularity

of time depends on the application domain. In the TOS, we use time point model (Dutta, 1989;

Ling et al, 1990). A time point is referred to as a time instance. A time instance is a distinct and

discrete point on the time-line and a dimension-less entity. Time interval is also used in the TOS

to represent time duration between two time instances, for example, time-span of a stage and

life-span of a temporal object. In this paper we use an abstract time “year” in each stage,

temporal object and family for the sake of simplicity.

2.2 Temporal Objects

 As mentioned in the previous section, an object is represented by its structure and state.

With the passage of time an object may change its structure and/or its state. By associating time

to both the structure and the state of an object, we can keep the history of changes to that object.

Therefore, we define a temporal object (TO) to be an ordered set of objects which is constructed

at different time instances. A temporal object is represented as TO = {(SR t1, STt1), (SRt2, STt2),. .

., (SRtn STtn)} where ti ≤ ti+1 for all 1 ≤ i < n, and where the ordered pair (SRti, STti) is the i-th

object of the temporal object which is constructed at the time instance ti, with structure SRti and

state STti. An i-th object of the temporal object is referred to as its i-th stage (Fotouhi et al,

1992a; Fotouhi et al, 1994; Shah, 1992). A new stage (or current stage) of a temporal object

shares the structure and/or state from the previous stage, which is not defined in the new stage.

Both current and previous stages are constructed as prototypes, defined in the prototype-based

approach (Borning, 1986). In the prototype-based approach, a new prototype can be defined from

an existing prototype by capturing the structure and/or state that is not defined in the previous

prototype (Borning, 1986; Chambers et al, 1989).

 A stage is maintained in a prototypical form, i.e., a structure, a state, or a combination of

the two (Borning, 1986). For example, if a temporal object suffers a structural change, then the

new stage of the temporal object captures only the structure change. A temporal object may also

7

be referred to as an ordered set of stages. For example, in Figure 2 the temporal object TOa of

the family Fi has n number of stages. The first and last stages of a temporal object are

significant because they hold the initial and current knowledge of the temporal object. We refer

to these stages as the birth stage (stage Si.a in Figure 2) and the current stage (stage Sn.a in Figure

2) of the temporal object TOa. The current stage (or the n-th stage) is the latest stage that is

appended to the temporal object. A new stage is appended to a temporal object when a change

occurs to the structure and/or state of the temporal object.

 ROF

Fi

 S1,a

 Sk-1,a

 Sk,a

 Sk+1,a

 Sn,a

 TOa
Figure 2: A temporal object TOa

 S1,r = (NT1r,t1r)

 S2,r = (NT2r,t2r)

 Sn-1,r = (NT(n-1)r,t(n-1)r)

 Sn,r = (NTnr,tnr)

Figure 3: Temporal object TOr with n number of stages

8

2.2.1. Temporal Parameters

 An ordered sequence of stages of a temporal object is referred to as the life-sequence of

the temporal object. The temporal object TOr has life-sequence Lr ={S1,r, S2,r,. . .., Sj,r} (see

Figure 3) where S1,r is the birth stage and Sj,r is the j-th stage (which is not the current stage) of

the temporal object. The set L may also be defined as Lr ={(NT1r,t1r), (NT2r,t2r),, (NTjr,tjr)}

where the ordered pair (NTir,tir) shows the knowledge (non-temporal and temporal) of the i-th

stage of the temporal object TOr. The NTir is non-temporal knowledge of the i-th stage, which

can be a structure, state, or both, and the time instance tir is the temporal knowledge of the stage.

The set ττττ = {t1r, t2r,, tjr} is the temporal knowledge of all stages in the set Lr. Note that the

two subscripts used in temporal and non-temporal knowledge of the stages identify stage number

in a temporal object and the temporal object, respectively. The set ττττ of a temporal object satisfies

the inequality tir ≤ t(i+1)r for all 1 ≤ i < j. If the set Lr includes all the stages in a temporal object

stage, then the set Lr is referred to as a complete life-sequence of the temporal object and denoted

by L. The complete life-sequence, L, of the temporal object TOr is given (see Figure 2) as

follows:

L = {(NT1r,t1r), (NT2r,t2r),....,(NTir,tir), (NT(i+1)r,t(i+1)r),....,(NTjr,tjr), ..., (NTnr,tnr)}

The set L1 = {(NTir,tir), (NT(i+1)r,t(i+1)r),....,(NTjr, tjr)} for the temporal object TOr is referred to as

partial life-sequence of the temporal object if L ⊃ Lr, where L is the complete life-sequence of

the temporal object. A complete life-sequence of a temporal object shows a complete life

history of the changes that occurred to the temporal object.

 Two terms, life-span for a temporal object and the temporal parameter time-span for a

stage are defined to study their temporal behavior. The temporal parameters are also used later in

temporal queries on temporal objects and their families. In Figure 3, the birth stage S1,r of the

temporal object TOr is created at the time instance t1r, and later at the time instance t2r the second

stage S2,r is created. The time interval [t1r,, t2r] (where [t1r,t2r] = {x | t1r ≤ x ≤ t2r} is referred to

9

as a closed interval on both ends) between the two time instances t1r and t2r defines the time-

span of the stage S1,r. It is time gap (or time difference) between the creation of two consecutive

stages in a temporal object. The interval [t1r,t2r) is closed on the left end and open on the right

end, i.e., [t1r,t2r) = {x | t1r ≤ x < t2r)}. During the time-span [t1r,t2r), the temporal object TOr had

only the birth stage S1,r in its life-sequence. All the temporal queries which lie in the time-span,

will be targeted to the stage S1,r, because the temporal object consists of only the birth stage

during the time interval [t1r,t2r). A pair of a time-span and an object identity reduces the search

space of a temporal query. In Figure 3, the stage Sn,r is the current stage of the temporal object,

and the time interval [tnr, now] which is a closed interval on both sides of the time interval, is the

time-span of the current stage. The time interval [t1r,now] is referred to as life-span of the

temporal object at time instance now. Note that the time instance now refers to present time.

 A temporal query on the temporal object TOr (see Figure 3) with a time instance tkr is a

temporally valid query if tkr ε [tnr, now]; otherwise the query is temporally invalid. In the case in

which the query is temporally valid, it may start its search from the current stage Sn,r based upon

the time value of the time instance tkr, and the knowledge of the previous stages Sn-1,r , Sn-2,r,

....,S2,r, S1,r may also be used in answering the query. If (tkr > now) is true or (tkr <t1r) is true, then

the temporal parameter tkr of the query is temporally invalid. The life-span of a temporal object

and time-spans of a stage are two closely related entities. The time-span of each stage of the

temporal object TOr is given (see Figure 3) in the following table:

 Stage Time-Span

 S1,r [t1r, t2r)
 S2,r [t2r, t3r)

 Si,r [tir, t(i+1)r)
 .
 Sn,r [tnr, now]

The life-span of the temporal object TOr is given as follows:

10

life-span = {[t1r , t2r), [t2r, t3r),......[tir, t(i+1)r),.....,[tnr, now]}, a set of adjacent time intervals.

The life-span of the temporal object can also be denoted as a single time interval [t1r, now].

 Fi ROF

 S1,a

 Sk-1,a

 Sk,a

 Sk+1,a S1,a.e

 S2,a.e

 Sn,a
 TOa Sj,a.e

 TOa.e
 Figure 4: Offstage object TOa.e from temporal object TOa

 Family Course Time = 1995

 Statistics-2

Figure 5: Offstage object Eng-Maths in the family Course - an example

 ROF

Time = 1970 Time=1969

birth birth
stage stage

Advance Maths

 Time=1975

Eng-Maths

11

 Now we define the relationships among the temporal parameters; time-span and life-span

of a family, temporal object, and stages. Assume that there are n number of temporal objects in a

family Ff and TOi is its the i-th temporal object. The temporal object TOi has j number of stages.

Time-span of the stages of the temporal object is the set {[t1i,t2i), [t2i,t3i),, [tji, now]}, and the

life-span of the temporal object will be [t1i,now]. Similarly, we can enumerate these temporal

parameters to the other temporal objects of the family. The life-spans of all n temporal objects of

the family Ff at a time instance now can be enumerated as the set{[t11,now],

[t12,now],.....[t1n,now]}. Each member of the set corresponds to the set of temporal objects {TO1,

TO2,....TOn} of the family Ff, respectively. Consider the set T= {t11, t12,.....t1n}, the set of time

instances when n temporal objects took their births. If in a family we assume that time instance

tinf be the infimum (Greatest Lower Bound- GLB) of the set T, i.e., tinf ≤ t1m, ∀ 1 ≤ m ≤ n (or

minimum{t11, t12, . . ., tmn}), then the time interval [tinf, now] is called the life-span of the family

Ff, For the j-th temporal object TOj of the family Ff, the life-span [t1j,now] of the temporal object

lies in the life-span [tinf ,now]of the family where t1j ≥ tinf. Now consider the k-th stage Sk,j of the

j-th temporal object, then time-span [tkj,t(k+1)j) of the stage is also contained by the life-span

[t1j,now] of the temporal object, i.e., (tkj ≥ t1j) ∧ (t(k+1)j ≤ now). Therefore, in general, for a

given family of the TOS, the following containment relationship that is denoted by “ ⊆ ” will be

true for a temporal object and its stages, and the family of the temporal object;

 time-span of stage ⊆ life-span of object ⊆ life-span of family

2.2.2. Offstage Objects

 A new temporal object can also be created in a family by sharing the knowledge from an

existing temporal object of the same family. The new temporal object is referred to as an offstage

object. In Figure 4 the temporal object TOa.e is an offstage object that is defined by sharing

knowledge of the temporal object TOa in the family Fi. The offstage object TOa.e starts by

sharing knowledge of the temporal object TOa from its stage Sk,a of the temporal object (see

Figure 4). The stage Sk,a, is significant in the definition of the offstage, this stage is referred to as

12

an offstage, and the temporal object TOa is referred to as a participant object (for more details

of an offstage object and offstage see (Shah et al, 1993a)). The subscripts used in the offstage

object TOa.e represent the participant object TOa and the offstage object, respectively. Also, we

are using “period” instead of “comma” to make the difference between the notations of a stage

and an offstage object. The offstage Sk,a is the stage from where the offstage object TOa.e starts

sharing the knowledge of the participant object. The set of stages {Sk,a, ..Sk-1,a, ...,S1,a} of the

participant object TOa is shared in the offstage object. In other words, the offstage object TOa.e

has taken its birth at time instance t1,a.e by sharing the set of stages {Sk,a, ..Sk-1,a, ...,S1,a} of the

participant object TOa. Note that both the temporal object and the offstage object have different

object identities.

ROF(Course)
Instance-Variables:
 { time=1965 state
 course-code, {time:1970,
 prereq, course:STA-201
 outlines course-name:Statistics-2
 } prereq:STA-101
Methods: outline:Discrete&
 {update} Continuous Probs.
 Time Series Analysis}

(a) ROF of family Course (b) Participant temporal object Statistics-2

 state
 state { time:1975,
 {time:1969, participants: Statistics-2 &
 course:MAT501 Advance-Maths
 course-name:Advance-Maths course:ECE661
 prereq:MAT201 course-name:Eng-Maths
 outline:Diff&integral equns. prereq:SAT-101 & MAT201
 Laplace Trans, outline:Diff. &integral eq
 Fourier Trans} Laplace Trans,
 Fourier Trans}

(c) Participant temporal object Advance-Maths (d) Offstage object Eng-Maths

Figure 6: Details of offstage object Eng-Maths and its participant temporal objects

 Now we find life-span of the offstage object TOa.e and the participant object TOa. The

set of time-spans of stages and life-span of the participant object TOa are given as follows:

13

Ta = {[t1,a, t2,a), [t2,a, t3,a),...., [tk,a, tk+1,a),...., [tn,a, now]} where t1,a was the time instance when

the first stage (birth stage) of the temporal object TOa was created, and tn,a was the time instance

when the current stage of the temporal object TOa was created. Here, the set Ta is the set of time-

spans of all stages of the participant object, the time interval [t1,a, t2,a) is the time-span of the

birth stage, and the time interval [t1,a, now] is the life-span of the participant object.

 The set of time-spans of the stages and the life-span of the offstage object TOa.e are

given, respectively, as follows:

Ta.e = {[t1,a.e, t2,a.e) , [t2,a.e, t3,a.e),...., [tj,a.e, now]} and life-span of TOa.e = [t1,a.e , now].

 Figures 5 and 6 exhibit an example of the offstage object Eng-Maths which is

constructed in the family Course. The offstage objects Eng-Maths is defined at the time instance

1975 by sharing knowledge of two participant objects Statistics-2 and Advance-Math through the

offstage S1,statistics-2 and S1,Advance-Maths, respectively (see Figure 5). Each participant object has one

stage (birth stage) at the time instance 1975 when the offstage object was defined. Figure 6(a)

shows the ROF of the family Course. The details of the stages S1,statistics-2 and S1,Advance-Maths of the

participant objects are shown in Figures 6(b) and 6(c), respectively. Figure 6(d) shows the birth

stage of the offstage object Eng-Maths. A temporal condition (Eng-Maths.1975 ≥ Statistics-

2.1970) ∧ (Eng-Maths.1975 ≥ Advance-Maths.1969) must be true before the creation of the

offstage object, where 1970 and 1969 are the time instances when the offstages of the participant

objects were defined.

 If an offstage object is sharing knowledge of only one participant object, then this is

analogous to simple inheritance in the class-based approach, and if an offstage object is sharing

knowledge from more than one participant temporal objects, then this is similar to the concept of

multiple inheritance in the class-based approach. An offstage object has some similarities and

differences with an object which is defined by using the class-based approach. For example, an

offstage object in a family and an object of a class both share the same common knowledge ROF

and class structure respectively. In a family, state of a temporal object can also be shared by an

14

offstage object, whereas, in the class-based systems it is usually not allowed. The concept of an

offstage enhances the reusability of knowledge within a family, and this benefit is not available

in the class-based approach.

2.3 Families of the TOS

 The concept of a family is used to assemble a group of temporal objects sharing a

common context. All temporal objects within a family can be handled in a similar fashion by

responding uniformly to a set of messages. A set of structures and\or states (available at the time

of defining a family) defines a common context of the family. The common context of a family is

referred to as the root-of-family (ROF) where common knowledge about all its temporal objects

is maintained (see (Fotouhi et al, 1992a; Fotouhi et al, 1992b; Fotouhi et al, 1994; Shah, 1992)

for more details). Temporal objects of a family can be defined only after the construction of

ROF of the family.

RTOS

Time = 1965 Time = 1966 Time = 1960 Time=1970

 ROF ROF ROF ROF

 ENG-66 Body-70 Vehicle-80

 ENG-68 Wheel-75

 Figure 7: Vehicle design and development system - an example of TOS

15

 In the class-based object-oriented systems, a class is used to assemble a set of objects

which share some common assets as it is done in a family in the TOS. However, a family

encapsulates more features than a class. For example, in a class, the structure of the class is

always shared by all its states (or instances). A change to the class structure not only affects the

states of the class, it also propagates to the structures and states of all subclass of the class. In a

family, however, the structure or state of each temporal object of the family shares the ROF only

at the time when its birth stage is created. After that, each temporal object is independent and a

change in a temporal object does not effect the ROF or any other objects of the family. In other

words, the ROF of a family is read-only, it does not change with time. Time is associated with a

temporal object and ROF of the family (see Figures 7- 9).

 Family Vehicle time=1970

 ROF ROF(Vehicle)
 Aggregation-of:
 {Engine,Body,Wheel}
 Instance-Variables:
 time=1979 { time=1979
 engine:ENG-66.1967 model#,
 body:Body-70.1968 year-of-model,
 wheel:Wheel-75.1969 net-weight}
 model#:M-151 Methods:
 year-of-model:1980-A {assemble, test-it}
 net-weight:550

 Figure 9: ROF of Family Vehicle
 Vehicle-80

Figure 8: TCO Vehicle-80 and it’s subobjects

 In the TOS two types of families, simple families and complex families, can be defined. A

simple family represents an independent object development environment in which temporal

objects can be constructed without sharing knowledge of other families. For example, in Figure

7, the families Engine, Body and Wheel are simple families. Two simple families do not share

any knowledge. A simple family is analogous to a class in the class-based approach, which has

no super-class like the system class or root class.

16

 In existing class-based object-oriented systems, a complex object is defined as an object

which can have another object as the value of a particular instance variable (Kim et al, 1987).

We extend our definition of a family to complex family which provides a facility for the

integration of non-homogeneous temporal objects of different families in order to build another

temporal object which is referred to as temporal complex object (TCO). The components of a

TCO are temporal objects of non-homogeneous families, and the temporal objects which take

part in the construction of a TCO are called subobjects (or components) of the TCO (for details

see (Fotouhi et al, 1992b; Shah et al, 1993b).

 A new TCO, TCOc, can be defined in a family Fc at a given time instance t1,c with r

number of subobjects of r different simple families. The birth stage of the TCO, TCOc, may be

created at time instance t1,c if the temporal condition (t1,k ≤ t1,c) (tFc ≤ t1,c) is true for all k such

that 1 ≤ k ≤ r, where tFc is the time instance when the complex family Fc was created, and t1,k is

the time instance when birth stage of the k-th subobject was created. This temporal condition

ensures that all temporal subobjects and the complex family exist before the existence of the

TCO. Figure 8 shows the birth stage of the complex family Vehicle which is an aggregation of

three simple families Engine, Body and Wheel. In this figure the TCO Vehicle-80 is constructed

at time instance 1979 (denoted by Vehicle-80.1979) if the temporal condition, (ENG-

66.1967 ≤ Vehicle-80.1979) ∧ (Body-70.1968 ≤ Vehicle-80.1979) ∧ (Wheel75.1969 ≤ Vehicle-

80.1979) ∧ (Vehicle-Family.1970 ≤ Vehicle-80.1979) is true, where ENG-66.1967, Body-

70.1968 and Wheel-75.1969 are the time instances when the subobjects ENG-66, Body-70, and

Wheel-75 are constructed in their families, respectively, and Vehicle.1970 is the time instance

when the family Vehicle is constructed in the TOS. A TCO has all temporal parameters, time-

span, life-span, and life-sequence, like other temporal objects. ROF of the family Vehicle which

was defined at a time instance 1979 is given in Figure 9.

 Within the boundary of a simple family, we use the offspring technique and among the

families we prefer the copying technique for knowledge sharing (Alashqur et al, 1989; Borning,

17

1986). The aggregation and integration of temporal objects into a TCO can generate certain

conflicts and compatibility problems such as naming and scaling between a TCO and its

subobjects. For example, Naming conflicts occur when two or more subobjects of a TCO contain

instance variables or methods with the same name such as the instance variable weight which

has been defined in subobjects Engine and Body as well as in the TCO Vehicle-80. We are

currently investigating these issues.

 In (Fotouhi et al, 1994), we proposed a temporal object-oriented query language (TOOL)

for the TOS. The query Language TOOL is a superset of SQL. The proposed language can

answer both the temporal and non-temporal queries on families (simple and complex). The

TOOL uses a set of logical operators and a set of temporal operators of the SQL and TSQL,

respectively (Clifford, 1982) (for more details and sample queries see (Fotouhi et al, 1994)).

3. Operators of the Temporal Object System (TOS)

 In this section, we describe a set of operations (or operators) that are proposed for the

creation of families, temporal objects, and stages in the TOS. There are two main sets of these

operations. The two sets of operations deal with the different operations that are related to the

simple family and its temporal objects, and the complex family and its temporal object,

respectively. Both types of families (simple family and complex family) are defined in the TOS

as children of the RTOS by designing ROF at a time instance (see Figures 1 and 7). The creation

of a new family in a TOS by designing its ROF, adds a new object development environment to

the TOS in which the new types of objects can be created. Addition of a stage either adds a new

temporal object or offstage object to a family, or it updates an existing temporal object by

appending the new stage to the life-sequence of the existing temporal object.

18

3.1 Simple Family Operations

 In this section, we propose operations for defining simple families and simple objects.

The following set of four operations are needed to design a simple family and its temporal

objects.

create-family (Fi, tFi): This operation creates a new family Fi in the TOS as child of the RTOS at

a time instance tFi by allocating space for a new child node ROF of the family Fi. The contents

of the ROF and a stage are the same; both contain two compartments: structure and state. The

following set of two operations, fills the common knowledge (structure, state, or both) in the

ROF of family Fi at the time instance tFi. The syntax of the two operations is as follows:

def-ROF-structure (Fi)
def-ROF-state (Fi)

 The first operation def-ROF-structure (Fi) stores common instance variables and

methods of the family in the structure compartment of the ROF of family Fi. This operation

provides common structural and behavioral capabilities to all future temporal objects that will be

defined in the family. The operation def-ROF-state (Fi) stores data values for the instance

variables (if any) in the state compartment of the ROF of family Fi.

 The following operations construct simple temporal objects in a given simple family. The

syntax of the operations is given and described as follows:

create-object (Fi, TOj, tTOj) if tTOj ≥ tFi: This operation creates a temporal object TOj in a simple

family Fi at a time instance tTOj by allocating space for the birth stage of the temporal object TOj.

The temporal object is created only if the temporal condition (tTOj ≥ tFi) is true where tFi is the

time instance when the family Fi was created in the TOS.

 The birth stage of the temporal object can be filled in with structure, state, or both by the

following two operations. These operations will also be used whenever a change occurs to a

temporal object, and a new stage is defined to incorporate the change to the temporal object.

19

assign-structure(Fi , TOj , STOj): This operation allows the user to assign instance variables and

methods to the stage STOj for the temporal object TOj. This operation further invokes separately

the following two operations for defining instance variables and methods in the stage.

assign-state(Fi, Toj, STOj): This operation enables the user to assign data values to locally defined

and shared instance variables of the stage STOj of the temporal object TOj.

 The following operation creates a new stage in a temporal object.

create-stage (Fi, TOj, tk) if tk ≥ tTOj: The operation creates a new stage at time instance tk in the

temporal object TOj of a family Fi, and it adds the new stage to the life-sequence of the temporal

object (see Section 2). The stage is created if the temporal condition tk ≥ tTOj is true where tTOj is

the time instance when the last stage was defined in the temporal object. The current stage and

the previous current stage are temporally dependent on each other. The operation stores any kind

of change made to the temporal object TOj in the form of a new (current) stage. The current stage

can be filled by the operations assign-structure()and assign-state() which have already been

described earlier.

After introducing a set of operations for constructing simple families and simple

temporal objects, we now describe operations to construct offstage objects and to renovate them.

The renovation operation on an offstage object brings a fresh copy of one or more participant

temporal objects. The fresh copy is shared by defining a new stage of the offstage object at a

time instance. Details about renovation of offstage object can be seen in (Shah et al, 1993a and

Fotouhi et al, 1994)

create-offstage-obj (TOj,
k

k r

=

=

1
U {TOk* tk}, tij): This operation creates an offstage object TOj in a

family environment by sharing knowledge of r number of temporal objects of the family at a

time instance t1j. Before explaining the syntax of the operation, we first describe the terms and

the index k which are used in the operation. These r number of temporal objects are referred to

as participant objects. There are r time instances tk, where 1 ≤ k ≤ r corresponds to r number of

20

participant objects. A time instance tk indicates the time instance in the life-span of the

participant object TOk, and all stages between the time instance tk up to the time instance t1k

(when the participant object was created) from the life-sequence of the participant object are

shared by the offstage object TOj. In other words, the knowledge (partial or complete life-

sequence) of the k-th participant object TOk which lies in the time interval [t1k, tk] is shared by

the offstage object TOj at the time instance t1j. For each k, there exists an integer m where m is

the number of stages of the participant object TOk, and tk is the time instance which identifies the

offstage Si,k from the life-sequence of the participant object, which is the i-th stage of the

participant object TOk. There can be four different cases based on the values of the time instance

tk to identify a partial or complete life-sequence for every participant object.

 The temporally-ordered set ττττk = {t1k, t2k, t3k , ...,..., tjk..., tnk}consists of temporal

parameters of the life-sequence Lk of the participant object TOk. The set ττττk and the time instance

now are displayed graphically in Figure 10 on the time line. As mentioned earlier the time

instance now represents present time instance. We have assumed earlier that the participant

object TOk has n number of stages at the time instance tk when the offstage object TOj is being

constructed. Therefore there will be n different points on the time line corresponding to each

stage, or corresponding to each member of the set ττττk, and one point is for the time instance now

to show the present time instance (see Figure 10). The point t0 is showing the origin or starting

time instance of the time line. It may be interpreted as the time instance when the family or the

TOS’s application was created. The time instance tk is displayed below the time line and its

position is shown by an upward arrow at different places on time line in each case (see Figure

10).

 In Figure 10, four possible cases are identified where the time instance tk can be

positioned in the life-sequence of the participant object TOk. A complete or partial life-sequence

of the participant object TOk, which lies in the time interval [t1k, tk] is shared by the offstage

21

object TOj. The t1k is the time instance when the birth stage S1,k of participant object TOk was

constructed. The time instance tk can take four different positions in the life-sequence of the

participant object based on its numeric value. The description of the four cases is as follows:

 t0 t1k t2k t3k tjk tnk now
Case-1
 tk

 t0 t1k t2k t3k tjk tnk now
Case-2
 tk

 t0 t1k t2k t3k tjk tnk now
Case-3
 tk

 t0 t1k t2k t3k tjk tnk now
Case-4
 tk

 Figure 10: Four different possible cases of the time instance tk

 Case-1: (tk ∈ ττττk) ∧ (tk ≠ now) In this case, the time instance tk is a discrete time

instance and it may lie at the beginning or at the end of time-span of a stage of the participant

temporal object TOk. In Figure 10/Case-1, time instance tk is identified as a time instance tjk

which is a member of the set ττττk, i.e., (tk = tjk). It is the time instance when the j-th stage Sj,k of

the participant object is constructed. Therefore, the stage Sj,k is the offstage, and a partial life-

sequence {S1,k, S2,k, S3,k,, Sj,k} of the participant object TOk will be shared by the offstage

object TOj.

 Case-2: (tk= now), i.e., the time instance tk is an extreme end of life-span [t1k, now] of

the participant object TOk (see Figure 10/Case-2). In this case, complete life-sequence of the

participant object will be shared by the offstage object, because the time instance now includes

the current stage of the participant object and its current stage is also the offstage.

22

 Case-3: (tk ∉ ττττk) ∧ (tk ≠ now), but the time instance tjk ∈ [t1k,now], i.e., t1k ≤ tk ≤ now,

where [t1k,now] is the life-span of the participant object TOk. In this case, the time instance tk is

not a member of the set ττττk. The time instance tk lies in time-span of any stage of the participant

object, as shown in Figure 10/Case-3. In the figure, we have assumed that the time instance tk ∈

[t3k, t4k] which is the time-span of the stage S3,k of the participant object. This stage will be the

offstage of the participant object and a partial life-sequence from the birth stage to the offstage

will be shared by the offstage object TOj. In Figure 10/Case-3, the stage S3,k is the offstage of the

participant object TOk and the partial life-sequence {S1,k, S2,k, S3,k} is shared by the offstage

object TOj at the time instance tk.

 Case-4: tk ∉ [t1k, now) It means that the time instance tk does not belong to the set ττττk,

the time instance tk is a time point before the birth of the participant object TOk, and its life-span

does not include the time instance tk. Therefore, no knowledge of the participant object will be

shared in this case. In other words, the time instance tk is not a valid time instance for the

participant object, and no knowledge of the participant object can be shared by the offstage

object TOj at the time instance tk.

 The set
k

k r

=

=

1
U {TOk *tk} enumerates a set of offstages from the set of participant objects

that will be shared by the offstage object. In other words, a set of life-sequences (partial and

complete) of the participant objects is extracted depending upon the values of the time instance tk

from every life-sequence of the participant object. The set of partial or complete life-sequences

will be shared by the offstage object TOj at the time instance tk.

 Before creating the birth stage of the offstage object TOj at the time instance t1j a

temporal condition (t1j ≥ tk) for all 1 ≤ k ≤ r is verified. The birth stage S1,j of the offstage

object TOj shares knowledge from the finite set of participant objects. The set of offstage

∪ {Si,k} where 1 ≤ i ≤ m and 1 ≤ k ≤ r and for each k ∃ an integer m such that 1 ≤ i ≤ m, is

23

stored in the parents compartment of the birth stage S1,j of the offstage object. The birth stage of

the offstage object is a complex stage in nature. Its other three compartments-structure, state, or

both can be filled by using the set of the two operations (i.e., assign-structure () and assign-

state()) which are already described.

ren-offstage-obj (Fc, TOc,
k

k r

=

=

1
U {Fj * TOj * tj}, tTOc) if tTOc ≥ tj for all 1 ≤ j ≤ k ≤ r: This

operation renovates an existing offstage object TOc at the time instance tTOc by creating its new

stage by using a finite set of the participant object
k

k r

=

=

1
U {TOk}. The semantics of the finite set

j

j r

=

=

1
U {Fj * TOj * tj} and the time instance tj are the same as described in the previous operation,

but the range of the index j can be different, because the number of participant object taking part

in the renovation may be equal to or less than the number of participant temporal objects which

have taken part in the construction of the offstage object in the past where past ≤ tTOc. It is also

possible that the number of stages of each participant object in the case of renovation may be

greater than the number of stages of each participant temporal object which took part initially in

the construction of the offstage object. The offstage object in renovated after validating the

following two conditions:

(i) In the past where (tTOc ≥ past) the temporal object TOc was defined in a family as an offstage

object by sharing a finite set of participant objects
j

j r

=

=

1
U {TOj}. It means that the set

j

j r

=

=

1
U {TOj} of

participant objects was also shared earlier at the time instance t1,c when the offstage object TOc

was defined by constructing its birth stage S1,j. Now only those temporal objects which are

member of the set
j

j r

=

=

1
U {TOj} can take part in the renovation of the offstage object TOj at the time

instance tTOc where (tTOc ≥ past). The time instance past is a time instance when the offstage

object was constructed or renovated. The operation checks the membership of the participant

24

objects which are participating in the renovation. Because only those participant objects can

participate in renovation of an offstage object which earlier participated in the construction of

the offstage object. The alignments of the temporal objects may be different in the syntax of the

creation and renovation operations of an offstage object.

(ii) The temporal condition (tTOc ≥ tj) must be true, where 1 ≤ j ≤ r. This temporal condition

ensures the temporal availability of knowledge of each participant object. It means that the

knowledge which is not acquired by a participant object at the time instance tj, cannot be

shared now by the offstage.

3.2 Complex Family Operators

 During the definition of a complex family, we define a configuration to reuse the

knowledge from a finite set of the existing families in another family (complex family) of the

TOS. The set of families is referred to as constituent families, and the temporal objects of the

constituent families are referred to as subobjects of a temporal complex object (TCO).

 In this section we describe a set of operations for designing a complex family, a TCO,

and to renovate a TCO. The set of operations is described as follows:

create-comp-family (Fc,
j

j r

=

=

1
U {Fj}, tFc) if tFc ≥ tFj: This operation creates a complex family Fc at

the time instance tFc in the TOS as an aggregation of a finite set of families
j

j r

=

=

1
U {Fj} where r is

an integer, and it can be referred to as the degree of the aggregation which is the number of

constituent families of the new complex family Fc. The set
j

j r

=

=

1
U {Fj} defines a permanent

configuration of the complex family Fc and all temporal objects of the complex family can use

the temporal objects only from the set of families
j

j r

=

=

1
U {Fj} after the creation of the complex

family. The temporal condition for all j, (tFc ≥ tFj) where 1 ≤ j ≤ r must be true before the

creation of the family. The temporal condition ensures the temporal correctness of the creation of

25

the complex family Fc. The temporal condition also ensures that all constituent families must

exist before participating in the aggregation of a new complex family. As all families are directly

children of the root node of the TOS (see Figure 1 and Figure 7), so the root of the TOS (i.e.,

RTOS) is also the parent of the newly defined complex family Fc. Each family is created with the

creation of its ROF. This operation creates a space for ROF of the family Fc and the set

j

j r

=

=

1
U {Fj}of families in its parents compartment. Later, the common knowledge of the complex

family can be filled in by the two operations, i.e., def-ROF-structure () and def-ROF-state ().

These operations are already defined in the previous section. After the operations create-family

and create-comp-family which create a simple family and a complex family, respectively, the

process of filling in the ROF of a family (simple or complex) is the same.

 After describing the operations related to complex families, we now describe an

operation to create a temporal complex object (TCO) in a complex family.

create-TCO (Fc, TOc,
j

j r

=

=

1
U {Fj * TOj* tj}, tTOc): This operation creates a TCO TOc at a time

instance tTOc in a complex family Fc by sharing r number of subobjects of the families which are

mentioned in the operation by the set
j

j r

=

=

1
U {Fj * TOj* tj}. The complex object is created if the

temporal condition (tj ≤ tTOc) ∧ (tFc ≤ tTOc) is true for all j, 1 ≤ j ≤ r where tFc is the time

instance when the complex family was created. The temporal condition ensures that all temporal

subobjects given in the operation and the complex family must exist before the construction of

the TCO. The semantics of the set
j

j r

=

=

1
U {Fj * TOj* tj} and the time instance tj are the same as

they are described in the operation for creating an offstage object. In the construction of a TCO

in a complex family, a number of subobjects from different constituent families are transported

into the family. The construction of a TCO causes transportability of knowledge among the

families of the TOS. The birth stage of the TCO contains the set of r temporal subobjects. The

26

knowledge of r temporal subobjects from their respective families, is shared by the TCO through

its birth stage S1,k. The alignment of the member tuples (family, subobject, time instance) as

given in the set
j

j r

=

=

1
U {Fj * TOj* tj} may be different from the alignment of the set of families

j

j r

=

=

1
U {Fj} that are used while designing the complex family Fc. The operation will be valid only if

a family which is a member of the set
j

j r

=

=

1
U {Fj * TOj* tj} is also a member of the set

j

j r

=

=

1
U {Fj}.

 The birth stage of the TCO can be defined by sharing the local properties and/or

assigning state using the two operations which are already defined for this purpose.

ren-TCO (Fc, TOc,
j

j p

=

=

1
U {Fj * TOj *tj}, tTOc): This operation renovates an existing TCO TOc at a

time instance tTOc. The operation validates the following conditions before starting the process of

renovation.

(i) The temporal condition (tj ≤ tTOc) for all 1 ≤ j ≤ r must be true,

(ii) All temporal subobjects
j

j p

=

=

1
U {Fj * TOj} which are participating in the renovation must

belong to the constituent families of the complex family F, and the subobjects which

participated in the construction of the original TCO TOc, can participate in the renovation of

the TCO. The semantics for alignment of this operation are similar to those that are already

mentioned in the create operation of a TCO.

 The operation renovates the TCO TOc by adding a stage, say, Si,c in the life-sequence of

the TCO. The renovation brings a fresh knowledge of one or more subobjects in the TCO.

4. Implementing the Operators of the TOS

 Figure 11 depicts the overall architecture of the temporal object system (TOS). Object

Manager (OM) is an important module of the TOS and is responsible for providing the basic

functionality to the TOS. We developed a prototype of the OM that performs a subset of the set

27

of operations of the OM, that are described in Section 4. The developed OM performs three

basic operations: creation of a new temporal object in a simple family, creation of a new stage in

an existing temporal object, and creation of an offstage in a family. The operations concerning

renovation of a complex temporal object and offstage object and other operations related to the

creation of complex families and complex temporal objects (see Section 4) are not yet

implemented. We are actively working on these operations and in the near future they will be

added to the developed OM. A complete design of the OM was reported in (Sayegh et al, 1994).

In the next section we give salient features of the design.

User Interface

Browser

Family
Manager (FM)

Storage
Manager (SM)

Users

Database

Query Language

Query
Processor (QP)

Object
Manager (OM)

 Figure 11: Architecture of the Temporal Object System (TOS)

28

Family

RTOS
Control

File

RTOS

Control
File

 TO

Control
File

 Stage

Instance

Control
File

Method
Control

File

Control
File

 Family

Temporal
Object

Stage
Method

Object Manager(OM)

Instance Variable

Variable

Module

Module

Module

Module

Module

Module

 Figure 12: Architecture of the object manager and other modules

4.1 Design of the Modules

 The OM consists of four modules: temporal object module, stage module, instance-

variable module, and method module (see Figure 12). As shown in the figure, Family Module

invokes the sub-modules of the OM to retrieve and store information such as ROF of a family.

Family Module is invoked by the main driver, i.e., RTOS Module (see Figure 12). In the next three

sections we describe the four sub-modules (or components) the OM.

 The architecture of the object manager and other modules is depicted in Figure 12. The

RTOS Module interacts with Family Module, and Family Module interacts with Temporal

Object Module (see Figure 12). These two modules, i.e., Family Module and RTOS Module,

are not components of the OM (the components of the OM are shown in a rectangle in Figure

12) but they are also developed because their development is necessary for the working of the

OM module. Here we briefly describe their functions and workings of these modules.

 The module RTOS loads the RTOS-Control-File (file layout is given in the next section)

once the system is turned on. The basic function of this module is to load the system primitives

and to accept the commands. This module interacts with Family Module for system-level

browsing. When a new family is defined in the system, the module RTOS validates the temporal

condition (for details see Section 4) before the creation of the new family.

29

 Family Module is responsible for the creation of new families and their ROFs. It stores

and retrieves ROFs of the newly defined families in Family-Control-File (layout is given in the

next section). This module also validates the temporal condition before the creation of a new

temporal object. This also interacts with Instance-Variable Module and the Method Module of

the OM while defining the instance-variables and the methods in the ROF of the family,

respectively. We summarize the main functions of the Family Module as follows:

(i) It stores and retrieves ROF and other information of a family.

(ii) It keeps track of the instance-variables and methods associated with ROF of a family.

(iii) It keeps track of temporal objects associated to a family.

4.1.1 Temporal-Object Module

 The main task of this module is to create a new temporal object in a family, and to

invoke the Stage Module that creates the birth stage of the new temporal object or creates a

current stage of an existing temporal object. This module also validates the temporal condition

before the creation of a temporal object. The Temporal-Object Module is mainly responsible for

storing and retrieving the information pertaining to temporal objects from the Temporal-Object-

Control-File (layout is given the next section), and to keep track of association between temporal

objects and their stages.

4.1.2 Stage Module

 This module gives an environment for creating a new stage in a temporal object and fill-

in the contents (instance-variables and methods) of the stage by activating the two modules:

Instance-Variables Module and Method Module (see Figure 12). The module is responsible for

the storage and retrieval of the contents of stages in Stage-Control-File. keeps track of the

associations between stages and its instance-variable and methods .

4.1.3 Instance-Variables and Method Modules

 The Instance-Variable module basically stores and retrieves the data type and data of

instance-Variables from Instance-Variables-Control-File (layout is given in the nest section).

30

This module also keeps track of association between instance-variables and stages of a temporal

object.

 The Method Module stores and retrieves methods from Method-Control-File (layout is

given in the next section). This module is also responsible for the compilation, code generation,

and invocation of the methods. This module keeps track of association between the methods and

stages of a temporal object.

4.1.4 Control Files

 The four modules of the Object Manager, Family Module, and RTOS Module that are

described in the previous sections. These modules use five different control files for storage and

retrieval purposes. The layouts of these control files are briefly given as follows:

RTOS-Control-File: A file contains information about the application such as application

creation time and name of application.

Family-Control-File: This file keeps information about the families of the application. It

contains family creation time, family name, starting address in Temporal-Object-Control-File of

the first temporal object in a family, number of temporal objects in the family, starting address of

the first instance-variable of ROF of the family in Instance-Variable-Control-File, number of

instance-variables in ROF of the family, starting address of the first method record of ROF in

the family in the Method-Control-File, and number of methods.

Temporal-Object-Control-File: This contains temporal object creation time, system generated

Object Identification Number (OID), temporal object name, starting address of the birth stage

record in the Stage-Control-File, and number of stages in the temporal object.

Stage-Control-File: This file contains stage creation time, starting address of the first instance-

variable of stage in Instance-Variable-Control-File, number of instance-variables in the stage,

starting address of the first method record in the Method-Control-File, and number of methods

in the stage.

31

Instance-Variables-Control-File: This file contains instance-variable name, instance-variable

type, and data value of instance-variable (if any).

Method-Control-File: This file contains method name, and method internal name (the internal

name is system generated). The reason to keep this name is to avoid the conflict in the method

names if the user creates two methods with the same name.

4.2 Operators Implementation Using SELF

4.2.1 Hardware and Software Configuration

 We have implemented the object manager using the programming language SELF

version 4.0 on a SUN Sparc Workstation running Solaries 2.4. The programming language SELF

is a prototype-based object-oriented programming (OOP) language that is originally developed at

Stanford University, and experimental versions of its compiler are developed by SUN

Corporation (Chambers et al, 1989).

4.2.2 Benefits of Using SELF for the Implementation

We have selected this language as the implementation tool to implement the three main

modules which are the three groups of the TOS operators for a number of reasons (see Figure

12). The SELF is a prototype-based and graphical-oriented OOP language. As mentioned before

the TOS model is a hybrid of the prototype-based and the class-based approaches and the SELF

makes the contents of each stage whether it belongs to a temporal object or ROF of a family

transparent to the user. This transparent property of the SELF makes all the changes (stages) to a

temporal object visible to the user and he can glance through the evolution of the temporal object

The SELF supports the concepts of both instance-variables and methods. Any entry in an object

in SELF is called a slot (Chamber et al, 1989). The slot could be a data slot or code slot, each has

its own behavior. Data slots return the data they have once called. Code slots, on the other hand,

perform a task once they receive a message invoking them. Code slots (SELF’s understanding

of methods) can have parameters sent to them and a receiver object to send the results to. The

language to code these slots are a SELF variation of SmallTalk.

32

By using SELF capabilities, custom objects can be created very easily. In terms of

objects' creation, the operators in the Object Manager of the TOS need a system that allows

creating families, temporal objects, and stages. SELF allows the end-user to create whatsoever

object he/she thinks of. We have created all the objects the TOS requires in addition to an object

to be a reference to all objects, which is the RTOS object that represents the ‘root’ of the system

and will hold the families within.

In addition to creating objects, SELF provides the facility to create sequences. Sequences

are objects in SELF that contains information about a list or group of objects. Using sequences

we were able to group families under RTOS together, temporal objects together under any

familyr, and stages under a temporal object in one bag.

4.2.3 SELF Implementation of the Modules

Our implementation of the TOS operators on SELF included the main system object

(RTOS, simple family, temporal object, and stage) with all their system-oriented attributes that

were mentioned as fields in the control files (see Section 4.4). The fields of the control files are

implemented as slots of objects, for example, fields of the RTOS-Control-File are implemented

as slots in the RTOS object. For the temporal condition validation methods, we have added

code-slots to the RTOS object to create families, temporal objects, and stages after validating the

temporal condition provided as parameters to these methods. These methods can be accessed

from anywhere in the TOS hierarchy since they are in the RTOS which is seen by all objects in

the TOS. The object manager of the TOS allows the user to create and maintain any number of

temporal objects in a family, each with any number of attributes, methods and slots.The only

limit is the amount of free memory available to the SELF 4.0 system. The TOS maintains some

internal objects such as RTOS (the root object), and it keeps some objects to maintain the

Window environment.

33

4.2.3.1 The RTOS Object

 The RTOS object contains instance-variables and methods necessary for maintaining the

TOS hierarchy with its various objects. It also maintains a list of all families in the system

through familiesList (see Figure 13). Further it stores the name of the application and points to a

time instance objects which records the creation time of the application as a whole.

Figure 13: The ‘RTOS’ object and its slots Figure 14: The 'family' object

Since RTOS object is considered to be a unique object within the TOS, it was defined as a

descendant of ‘traits oddball’ which in SELF 4.0, is considered to be a prototype from all unique

non-colorable objects. This root object is automatically displayed whenever the system is

initiated. Among other slots, the RTOS contains the necessary methods for creating new

instances of families, temporal objects and stages, namely: the CreateFamily, CreateStage and

CreateTemporal methods.

4.2.3.2 The ‘Family’ Object - Family Module

 The ‘Family’ object is intended to be a prototype of all families that will be created in the

system. A ‘family’ is declared to be a descendent of traits clonable, such objects can be cloned

whenever necessary. The family object also keeps tracks of the family’s name, time of creation,

number of temporal objects within, and a list of the enclosed temporal objects. In addition, other

34

attributes and methods can be added dynamically at run time to meet the requirements of the

problem at hand.

4.2.3.3 The ‘Temporal’ Object - Object Module

The temporal object is intended to act as a prototype for the TOS’s temporal objects that

are meant to be created and enclosed within families. A family may have any number of

temporal objects as long as there is enough system memory.

The temporal object is also a descendent of traits clonable. It stores the time of its

creation, the number of stages within, its ID number, as well as the number and list of enclosed

stages. Other slots can be added and manipulated dynamically at run time.

Figure 15: The 'Temporal' object Figure 16: The 'Stage' object

4.2.3.4 The ‘Stage’ Object

Within a temporal object, there is a list of stages. The stages represent entities and

changes applied on them as time evolves.

The stage object acts as a prototype for creating new stages. The stage object records the

stage creation time, the name of the family it belongs to, the individual stage number, the name

of the temporal object it belongs to. Additionally, to enable a stage to inherit methods and

attributes from preceding stages, a prevStage slot is declared. This slot is intended to point to

the immediate preceding stage and to inherent its attributes and methods.

35

4.2.3.5 The ‘tosWorld’ Object

The ‘tosWorld’ object is used to maintain the TOS World environment along with its user

interface elements and labels. The ‘tosWorld’ object implements two useful methods:

* ‘init’ for initiating and displaying a new instance of the TOS World Window, which is the

main interface to the Object Manager, and

•••• ‘kill’ to terminate a TOS World Window.

4.2.3.6 The Time Stamp Object

The ‘timestamp’ object is a general object used by the different objects within the TOS to

record the creation time. If a programmer likes to change time format and/or intervals he only

needs to tamper with the ‘timestamp’ object.

Figure 17: The 'tosWorld' Window

4.3 Using the Object Manager

 There are two ways for the end-user to utilize the OM in the environment of SELF. A

user can directly use the graphical interface of the ‘tosWorld’ that is built over the graphical

interface of SELF 4.0. In this way, the user can create and manipulate objects visually. The

whole ‘tosWorld’ environment along with its various families, stages and temporal objects can

be preserved by the ‘save snapshot’ feature of SELF 4.0. As an alternative, a user may write a

36

complete SELF script that utilizes the functionality made available within the ‘RTOS’ object.

Such scripts can be run under the ‘tosWorld’ environment directly.

5. Conclusions and Future Work

5. 1 Conclusions

 We briefly described the TOS, an object-oriented system, which uses a hybrid approach

of the class-based and prototype-based approaches, and utilized the merits of both techniques.

The concept of family is similar to the concept of a class, with the difference that families in the

TOS are not organized into a class-hierarchy (or class lattice) as it is done in the class-based

object-oriented systems. The TOS is a collection of families organized in a two-level hierarchy.

We extended the concept of a family to a complex family in order to share knowledge of existing

families. The concept of complex family enhances reusability and transportation of objects

knowledge among them. We associate time dimension with each activity of the TOS.

 In this paper we defined and described the operators of the TOS and reported on their

implementation. These operators are grouped into three different modules: Object Module (or

Object Manager), RTOS Module, and Family Module The grouping is based on the

functionality’s of the operators. The operators are implemented using OOP SELF version 4.0.

This implementation gives a basic environment of the TOS where simple families and simple

temporal objects can be created and updated.

5.2 Future Work

 We intend to further extend the current implementation of modules to include remaining

un-implemented operators of these modules. This extension will provide more functionality to

the TOS such as creation of complex families, temporal complex objects, and renovation of

objects. We also intend to develop other modules of the TOS that are given in Figure 11.

 Additionally, we are in progress of porting TOS to Java. The project will focus on

providing a graphical platform-independent system in which the object manager will run as a

37

Java applet with a GUI interface such that it can be executed within a web browser while

providing the ability to create and manipulate objects graphically. Furthermore, by using

emerging technologies like Java's support for RMI (Remote Method Invocation), we are

considering to expand the functionality of the OM so it can support the creation and

manipulation of distributed objects.

References

Agrawal, R., Buroff, S., Gehani, N., and Shasha, D (1991), “Object Versioning in Ode,”
 Proceedings of the 7th IEEE Int. Conference on Data Engineering, pp. 446-445.
Alashqur, A. M., Su, S. Y. W., and Lam, H. (1989), “OQL: A Query Language For
 Manipulating Object-Oriented Databases,” Proceedings of 15th International
 Conference. on VLDB, pp. 433-442.
Borning, A. H. (1986), “ Classes Versus Prototypes in Object-Oriented Languages,” ACM/IEEE
 Fall Joint Conference, pp. 36-40.
Chambers, C., Ungar, D., and Lee, E. (1989), “An Efficient Implementation of SELF a
 Dynamically-Typed Object-Oriented Language Based on Prototypes,” Proceedings of
 the ACM International Conference on Object-Oriented Programming Languages,
 Systems and Applications (OOPSLA’89), pp. 49-70.
Clifford, J. (1982), “A Model for Historical Databases,” Proceedings of Logical Bases For
 Databases, Toulouse, France.
Dutta, S., (1989), “Generalized Events In Temporal Databases,“ Proceedings of the 5th IEEE
 International Conference on Data Engineering, pp. 118-126.
Fotouhi, F., Shah A., and Grosky, W. (1992a), “TOS: A Temporal Object System,” Proceedings
 of the 4th Inl. Conference on Computing. & Information, Toronto, Canada, pp. 356.
Fotouhi, F., Shah A., and Grosky, W. (1992b), “Complex Objects in the Temporal Object
 System,” IEEE Post-Proceedings of the 4-th Int. Conference on Computing &
 Information, pp. 384.
Fotouhi, F., Shah. A., Ahmed, I., and Grosky (1994), TOS: A Temporal Object-Oriented
 System,” Journal of Database Management, 5(4), pp. 3-14.
Gadia, S. K., and Yeung, C. S. (1991), “Inadequacy of Interval Timestamps in Temporal
 Databases,” the Information Sciences Journal, 541(1&2), pp. 1-22.
Katz, R. H., Chang, E., and Bhatega, R. (1986), “Version Modeling Concepts for Computer-
 Aided Design Databases,” Proceedings of the ACM SIGMOD Conference, pp. 379-386.
Kim, W., Banerjee, J., et al (1987), “Composite Object Support in an Object-Oriented Database
 System,” Proceedings of the ACM International Conference on Object-Oriented
 Programming Languages, Systems and Applications (OOPSLA’87),), pp. 118-125.
Kim, W., (1990), “Introduction to Object-Oriented Databases,” The MIT Press, Cambridge,
 Massachusetts.
Ling D. H. O., and Bell, D. A. (1990), “Taxonomy of Time Models in Databases,” Information

& Software Technology Journal, 32(3), pp. 215-224.
Maier, D. (1986), “Why Object-Oriented Database Can Succeed Where Others Have Failed,”
 Proceedings of International Workshop on Object-Oriented Database Systems,
 pp. 227.

38

Nguyen, G. T., and Rieu, D. (1989), “Schema Evolution in Object-Oriented Database Systems,”
 Data & Knowledge Engineering Journal, North-Holland, 4(1), pp. 43-67.
Roddick, J. F., (1992), “Schema Evolution in Database Systems - An Annotated Bibliography,”

ACM-SIGMOD Record, 21(4), pp. 35-40.
Sayegh, T., Shah, A., Faraj, I., Fotouhi, F., and Grosky, W. (1994), “Design of Object Manager
 For the TOS,” the VIII International Symposium in Informatics Applications
 (INFONOR94), Chile, pp. 103-109.
Shah, A., (1992), “TOS: A Temporal Object System,” Ph.D. Dissertation, Wayne State
 University, Detroit, Michigan, USA.
Shah, A., Fotouhi F., and Grosky, W. (1993a), “Offstage objects and their Renovation in the
 Temporal Object System TOS,” the 3rd International Symposium on Database for
 Advance Applications, Daejeon, Korea, April 6-8, pp. 306-312.
Shah, A., Fotouhi, F., and Grosky W. (1993b), “Renovation of Complex Object in the TOS,”

the 12th Annual IEEE International Phoenix Conference on Computers &
 Communications, Scottsdale, Arizona, USA, pp. 203-209.

Shah, A., Fotouhi, F., Grosky, W., Al-Dhelaan, A., and Vashishta, A. (1993c), “A Temporal
 Object System For a Construction Environment,” Proceedings of the XIII Conference of
 the Brazilian Computer Society (SEHOSH-90), Vol. 1, pp. 211-225.

39

Appendix

 A circle represents a stage of a temporal object.

Time

 An oval shape represents a temporal object.

 A rectangle shape represents a family.

 Time

 A double oval shape represents a root-of-family (ROF).

 RTOS A double rectangle shape represents root of the TOS- RTOS.

(1)
A single point arrow represents direction of next stage of a temporal object.

(2)
A dark arrow represents temporal inheritance.

(3)
A double arrow represents Renovation or temporal repeated inheritance.

