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Abstract 

 We proposed a Temporal Object System (TOS) which maintains changes to both the 

structure and the state of an object in a temporal fashion (Shah, 1992; Fotouhi et al, 1992a; 

Fotouhi, et al, 1992b; Fotouhi, et al, 1994). Objects in TOS are referred to as temporal objects 

and are allowed to evolve over time. A collection of temporal objects which share the same set 

of common properties is grouped into a family. A temporal object that can be defined by using 

the local knowledge of a family is referred to as an offstage object (Shah et al, 1993a).  We also 

discussed the renovations of both temporal complex objects and offstage objects in (Fotouhi et 

al, 1992; Shah et al, 1993a; Fotouhi et al, 1994). 

 This paper is a continuation of the work reported in (Fotouhi et al, 1994), and now we 

report on the operators of the temporal object system (TOS) and their implementation. These 

operators are grouped into three different modules of the TOS based on their relevant functions. 

These modules are: Object Manager (or Object Module), Family Module, and Root of TOS 

(RTOS) Module. The important module is the Object Manager (OM) that consists of basic 

operators. The modules provide a facility for defining a simple temporal object and later to add a 

stage in the temporal object. The other operators are grouped into the two other modules and are 
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referred to as  RTOS module and Family module. We have implemented these operators using 

the SELF version 4.0 programming language on a SUN Sparc Workstation running Solaries 2.4. 

Key Words: object-oriented databases, temporal database,  temporal objects, object manager 
 
 
1.  Introduction 
 In most of the existing relational database systems, data objects are stored in a non-

temporal fashion. That is, when the value of an attribute changes, the old value is replaced by the 

new value. Thus, only the latest state of an object resides in the database. However, for many 

database applications such as Computer-Aided Design/Computer-Aided Manufacturing 

(CAD/CAM), Computer Aided Construction (CAC), etc., it is not appropriate to discard old 

information.  In these cases it is necessary to associate time values with data to indicate the time 

for which the data is valid. A time dimension is added to a database either at the attribute level 

(Clifford, 1982) or the tuple level (Gadia, 1991) to keep the history of a data object.  Such a 

database is referred to as a temporal database (Dutta, 1989; Gadia et al, 1991).  

 Time in a temporal relational system is modeled as either a time point or a time interval. 

Both time models are considered equivalent (Dutta, 89). The value of time associated with a data 

object is determined by the system or assigned by the user. If a time value is assigned by the 

system, then it is referred to as a physical time such as transaction time, while if it is assigned by 

the user, then it is referred to as a logical time such as user-defined time (Ling et al, 1990). 

 Relational database and their temporal extensions are suitable for simple record-based 

applications, but are not suitable for engineering and other complex database applications due to 

their limitations in defining a complex object directly and at one place (Mair, 1986). Several 

types of object-oriented databases have been proposed to support the development of these 

application systems. In the object-oriented paradigm, an object is defined by two parameters: 

structure and state. The structure (SR) of an object provides the structural and behavioral 

capabilities to that object, and it is defined by a set of instance variables and methods. The state 

(ST) of an object assigns data values to the instance variables of the objects, and the methods 
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operate on them. A set of objects that share the same structure is referred to as a class. An 

object-oriented database is a collection of classes which are organized as a directed acyclic graph 

(DAG) or a simple directed graph (Kim et al, 1987, Kim, 1990). 

 In the existing object-oriented database systems, changes to the state of an object are 

maintained via version management (Agrawal et al, 1991; Katz et al, 1986). Also, structural 

changes are supported in most of the object-oriented database systems.  Such changes to a class 

are referred to as schema evolution in the literature (Nguyen et al, 1989; Roddick, 1992).  There 

are three possible scenarios of a class to change its structure. These are: 

(type I) Adding new instance variables and/or methods 

(type II) Deleting instance variables and/or  methods 

(type III) Updating an instance variable and/or a method 

For type I changes, there is no loss of knowledge in a class because the previous knowledge of 

the class structure is also retained along with the new one. We define knowledge of  an object of 

a class by the structure of the class. In the TOS environment, we define knowledge of a temporal  

object or a stage by the structure, the state, or both. Both (temporal object and stage) are defined 

later in this paper. On the other hand, for type II and type III changes, the history of the changes 

to a class structure is not readily available, as it is overwritten or deleted in the latest version of 

the class structure. Current object-oriented database systems keep only the current version of 

each class structure. After any one of the type II or type III changes, it is necessary to reload a 

previous version of the database to retrieve any information from a previous version of a class 

structure. It is a desirable feature of CAD/CAM, CAC, and other advanced engineering database 

applications to keep history of changes to the class structures (Shah et al, 1993). It helps in 

designing a new product by using previous products. 

 In (Fotouhi et al, 1992a; Fotouhi et al, 1994; Shah, 1992) we introduced a temporal 

object-oriented system (TOS) which maintains the history of changes to both the structure and 

the state of an object in a consolidated and elegant manner. We associated time (point model) to 
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both the structure and state of an object. Such an object is referred to as a temporal object.  A 

temporal object evolves over time due to changes to its state, structure, or both. A set of 

temporal objects which share a common knowledge (i.e., structure and state) is referred to as a 

family. The TOS also facilitates the construction of a complex family which is an aggregation of 

temporal objects from various families. The objects in a complex family are referred to as 

temporal complex objects (for details see (Fotouhi et al, 1992b and Shah et al, 1993b)). A 

complex family increases the knowledge sharing (or reusability) of non-homogeneous temporal 

objects and their transportability from one family to another. A temporal object system (TOS) is 

therefore a collection of families which are defined at different time instances. The concept of 

renovation refreshes the knowledge of temporal complex objects and offstage objects by 

replacing their sub-objects and participant objects (they are defined later in Section 2), 

respectively, at any time instance.  

 In this paper, we extend our work that was reported in (Fotouhi et al, 1994), and define 

operators of the TOS. Function  of each operator is different such as the creation of simple 

families, complex families, simple temporal objects, offstage objects, temporal complex objects, 

renovation of objects, and so on. The operators are grouped into the different modules which are 

referred to RTOS Module, Family Module, and Object Module (or Object Manager). We have 

implemented this module using SELF (version 4.0) programming Language. Currently these 

modules are doing basic functions such as the creation of simple families, simple temporal 

objects, stages, etc. 

 The remainder of this paper is organized as follows: In Section 2, we describe the TOS 

and its components.  Section 3 gives syntax of the operators of the TOS and  their description. In 

Section 4, we give the system architecture that implements the operators. We have implemented 

the operators in SELF programming language, Section 4 deals with the implementation details. 

Finally, in Section 5, we give our concluding remarks and future research directions. 
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2.  Temporal Object System (TOS) 

 As mentioned earlier, the TOS is a collection of simple and complex families which are 

defined at different time instances. A family is a collection of temporal objects, and a temporal 

object is a collection of stages. Figure 1 shows a general schema of the TOS, where RTOS 

represents the root node of the system with n families, i.e., F1, F2 F3,. . . Fn as its children. These 

families are constructed in the TOS at the time instances, t1, t2, . . ., tn, respectively (see Figure 

1). The figurative notations which are used in Figure 1 and in other figures are given in  

Appendix  at the end of the paper. 

 In the next section we give a brief overview of the temporal objects which are the 

building blocks of the family, and then we discuss the concept of families. 

 

    RTOS

ROF1           ROF2            ROFn

   
TOn.1   TOn.2

TO1.1

TO1.2  TO2.1

time= t1 time = t2  tome = tn

 
       F1    F2      Fn 

  Figure 1: Schema of a Temporal Object System (TOS) 
 

2.1  Time Dimension in TOS 

 A time dimension is associated with the creation of a stage, a temporal object, and a 

family in TOS. Time is explicitly defined by the user as an instance variable. While creating a 
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TOS application the data type of the time is defined. The data type of the time should be 

mentioned in the creation of all families, temporal objects, and stages in future. The granularity 

of time depends on the application domain. In the TOS, we use time point model (Dutta, 1989; 

Ling et al, 1990). A time point is referred to as a time instance. A time instance is a distinct and 

discrete point on the time-line and a dimension-less entity. Time interval is also used in  the TOS 

to represent time duration between two time instances, for example, time-span of a stage and 

life-span of a temporal object. In this paper we use an abstract time “year” in each stage, 

temporal object and family for the sake of simplicity. 

2.2  Temporal Objects 

 As mentioned in the previous section, an object is represented by its structure and state. 

With the passage of time an object may change its structure and/or its state. By associating time 

to both the structure and the state of an object, we can keep the history of changes to that object. 

Therefore, we define a temporal object (TO) to be an ordered set of objects which is constructed 

at different time instances. A temporal object is represented as TO = {(SR t1, STt1), (SRt2, STt2),. . 

., (SRtn STtn)} where ti ≤ ti+1 for all 1 ≤  i < n, and where the ordered pair (SRti, STti) is the i-th 

object of the temporal object which is constructed at the time instance ti, with structure SRti and 

state STti. An i-th object of the temporal object is referred to as its i-th stage (Fotouhi et al, 

1992a; Fotouhi et al, 1994; Shah, 1992). A new stage (or current stage) of a temporal object 

shares the structure and/or state from the previous stage, which is not defined in the new stage. 

Both current and previous stages are constructed as prototypes, defined in the prototype-based 

approach (Borning, 1986). In the prototype-based approach, a new prototype can be defined from 

an existing prototype by capturing the structure and/or state that is not defined in the previous 

prototype (Borning, 1986; Chambers et al, 1989). 

 A stage is maintained in a prototypical form, i.e., a structure, a state, or a combination of 

the two (Borning, 1986).  For example, if a temporal object suffers a structural change, then the 

new stage of the temporal object captures only the structure change. A temporal object may also 
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be referred to as an ordered set of stages.  For example, in Figure 2 the temporal object TOa of 

the family Fi has n  number of stages. The first and last stages of a temporal object are 

significant because they hold the initial and current knowledge of the temporal object. We refer 

to these stages as the birth stage (stage Si.a in Figure 2) and the current stage (stage Sn.a in Figure 

2) of the temporal object TOa. The current stage (or the n-th stage) is the latest stage that is 

appended to the temporal object. A new stage is appended to a temporal object when a change 

occurs to the structure and/or state of the temporal object. 

 
     ROF 

Fi         

     

          S1,a 

       
           Sk-1,a 

              

              Sk,a 
      

          Sk+1,a 

 

       
           Sn,a 

      TOa   
Figure 2: A  temporal object TOa 

  
      S1,r = (NT1r,t1r)                

     

        S2,r = (NT2r,t2r)  

     

     Sn-1,r = (NT(n-1)r,t(n-1)r)              

       

           Sn,r = (NTnr,tnr)             

 
Figure 3: Temporal object TOr  with n number of stages 
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2.2.1.  Temporal Parameters 

 An ordered sequence of stages of a temporal object is referred to as the life-sequence of 

the temporal object. The temporal object TOr has life-sequence  Lr ={S1,r, S2,r,. . .., Sj,r} (see 

Figure 3) where S1,r is the birth stage and Sj,r is the j-th stage (which is not the current stage) of 

the temporal object. The set L may also be defined as Lr ={(NT1r,t1r), (NT2r,t2r), ....., (NTjr,tjr)} 

where the ordered pair (NTir,tir) shows the knowledge (non-temporal and temporal) of the i-th 

stage of the temporal object TOr.  The  NTir is non-temporal knowledge of the i-th stage, which 

can be a structure, state, or both, and the time instance tir is the temporal knowledge of the stage. 

The set ττττ    = {t1r, t2r, .. .., tjr} is the temporal knowledge of all stages in the set Lr. Note that the 

two subscripts used in temporal and non-temporal knowledge of the stages identify stage number 

in a temporal object and the temporal object, respectively. The set ττττ of a temporal object satisfies 

the inequality tir ≤ t(i+1)r for all 1 ≤ i < j. If the set Lr includes all the stages in a temporal object 

stage, then the set Lr is referred to as a complete life-sequence of the temporal object and denoted 

by L.  The complete life-sequence, L, of the temporal object TOr is given (see Figure 2) as 

follows: 

L = {(NT1r,t1r), (NT2r,t2r),....,(NTir,tir), (NT(i+1)r,t(i+1)r),....,(NTjr,tjr), ..., (NTnr,tnr)} 

The set L1 = {(NTir,tir), (NT(i+1)r,t(i+1)r),....,(NTjr, tjr)} for the temporal object TOr is referred to as 

partial life-sequence of the temporal object if L ⊃ Lr, where L is the complete life-sequence of 

the temporal object.  A complete life-sequence of a temporal object shows a complete life 

history of the changes that occurred to the temporal object. 

 Two terms, life-span for a temporal object and the temporal parameter time-span for a 

stage are defined to study their temporal behavior. The temporal parameters are also used later in 

temporal queries on temporal objects and their families. In Figure 3, the birth stage S1,r of the 

temporal object TOr is created at the time instance t1r, and later at the time instance t2r the second 

stage S2,r is created.  The time interval [t1r,, t2r] (where [t1r,t2r] = {x | t1r ≤  x ≤  t2r} is referred to 
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as a closed interval on both ends) between the two time instances t1r and t2r defines the time-

span of the stage S1,r.  It is time gap (or time difference) between the creation of two consecutive 

stages in a temporal object. The interval [t1r,t2r) is closed on the left end and open on the right 

end, i.e., [t1r,t2r) = {x | t1r ≤  x < t2r)}. During the time-span [t1r,t2r), the temporal object TOr had 

only the birth stage S1,r in its life-sequence. All the temporal queries which lie in the time-span, 

will be targeted to the stage S1,r, because the temporal object consists of only the birth stage 

during the time interval  [t1r,t2r). A pair of a time-span and an object identity reduces the search 

space of a temporal query. In Figure 3, the stage Sn,r is the current stage of the temporal object, 

and the time interval [tnr, now] which is a closed interval on both sides of the time interval, is the 

time-span of the current stage. The time interval [t1r,now] is referred to as life-span of the 

temporal object at time instance now. Note that the time instance now refers to present time. 

 A temporal query on the temporal object TOr (see Figure 3) with a time instance tkr is a 

temporally valid query if tkr ε  [tnr, now]; otherwise the query is temporally invalid. In the case in 

which the query is temporally valid, it may start its search from the current stage Sn,r based upon 

the time value of the time instance tkr, and the knowledge of the previous stages Sn-1,r , Sn-2,r, 

....,S2,r, S1,r may also be used in answering the query. If (tkr > now) is true or (tkr <t1r) is true, then 

the temporal parameter tkr of the query is temporally invalid. The life-span of a temporal object 

and time-spans of a stage are two closely related entities. The time-span of each stage of the 

temporal object TOr is given (see Figure 3) in the following table: 

         Stage                           Time-Span 

 S1,r                                [t1r, t2r) 
 S2,r                                [t2r, t3r) 
  
 Si,r                                [tir, t(i+1)r) 
 . 
 Sn,r                               [tnr, now] 
 
The life-span of the temporal object TOr is given as follows: 
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life-span = {[t1r , t2r ), [t2r, t3r),......[tir, t(i+1)r ),.....,[tnr, now ]}, a set of adjacent time intervals. 

The life-span  of the temporal object can also be denoted as a single time interval [t1r, now]. 

    Fi     ROF 

     

             S1,a 

       
           Sk-1,a 

                   Sk,a 

         
          Sk+1,a                                       S1,a.e 

        S2,a.e  
    
       
           Sn,a 
                 TOa    Sj,a.e  

              TOa.e       
   Figure 4: Offstage object TOa.e from temporal object TOa 

     Family Course    Time =  1995 
   
             

          

        

      

 

 

 

          Statistics-2  

 

 
 
  
 
 

Figure 5: Offstage object Eng-Maths in the family Course - an example 
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 Now we define the relationships among the temporal parameters; time-span and life-span 

of a family, temporal object, and stages. Assume that there are n number of temporal objects in a 

family Ff and TOi is its the i-th temporal object. The temporal object TOi has j number of stages. 

Time-span of the stages of the temporal object is the set  {[t1i,t2i), [t2i,t3i), ....., [tji, now]}, and the 

life-span of the temporal object will be [t1i,now]. Similarly, we can enumerate these temporal 

parameters to the other temporal objects of the family. The life-spans of all n temporal objects of 

the family Ff at a time instance now can be enumerated as the set{[t11,now], 

[t12,now],.....[t1n,now]}. Each member of the set corresponds to the set of temporal objects {TO1, 

TO2,....TOn} of the family Ff, respectively. Consider the set T= {t11, t12,.....t1n}, the set of time 

instances when n temporal objects took their births. If in a family we assume that time instance 

tinf be the infimum (Greatest Lower Bound- GLB) of the set T, i.e., tinf ≤ t1m, ∀ 1 ≤  m ≤  n (or 

minimum{t11, t12, . . ., tmn}), then the time interval [tinf, now] is called the life-span of the family 

Ff, For the j-th temporal object TOj of the family Ff, the life-span [t1j,now] of the temporal object 

lies in the life-span [tinf ,now]of the family where t1j ≥  tinf. Now consider the k-th stage Sk,j of the 

j-th temporal object, then time-span [tkj,t(k+1)j) of the stage is also contained by the life-span 

[t1j,now] of the temporal object, i.e., (tkj ≥  t1j) ∧  (t(k+1)j  ≤ now). Therefore, in general, for a 

given family of the TOS,  the following containment relationship that is denoted by “ ⊆ ” will be 

true for a temporal object and its stages, and the family of the temporal object; 

 time-span of stage  ⊆ life-span of object   ⊆ life-span of family 

2.2.2.  Offstage Objects 

 A new temporal object can also be created in a family by sharing the knowledge from an 

existing temporal object of the same family. The new temporal object is referred to as an offstage 

object.  In Figure 4 the temporal object TOa.e is an offstage object that is defined by sharing 

knowledge of the temporal object TOa in the family Fi. The offstage object TOa.e starts by 

sharing knowledge of the temporal object TOa from its stage Sk,a of the temporal object (see 

Figure 4). The stage Sk,a, is significant in the definition of the offstage, this stage is referred to as 
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an offstage, and  the temporal object TOa is referred to as a participant object (for more details 

of an offstage object and offstage see (Shah et al, 1993a)). The subscripts  used in the offstage 

object TOa.e represent the participant object TOa and the offstage object, respectively. Also, we 

are using “period” instead of “comma” to make the difference between the notations of a stage 

and an offstage object. The offstage Sk,a is the stage from where the offstage object TOa.e starts 

sharing the knowledge of the participant object. The set of stages {Sk,a, ..Sk-1,a, ...,S1,a} of the 

participant object TOa is shared in the offstage object.  In other words, the offstage object TOa.e 

has taken its birth at time instance t1,a.e by sharing the set of stages {Sk,a, ..Sk-1,a, ...,S1,a} of the 

participant object TOa. Note that both the temporal object and the offstage object have different 

object identities. 

ROF(Course)                       
Instance-Variables:      
 { time=1965         state 
   course-code,      {time:1970, 
   prereq,        course:STA-201    
   outlines             course-name:Statistics-2 
 }         prereq:STA-101 
Methods:        outline:Discrete& 
 {update}         Continuous Probs. 
               Time Series Analysis} 
 
(a)  ROF of family Course    (b) Participant temporal object  Statistics-2 
 
          state 
             state        { time:1975, 
   {time:1969,         participants: Statistics-2 & 
         course:MAT501                                     Advance-Maths 
   course-name:Advance-Maths                  course:ECE661    
    prereq:MAT201         course-name:Eng-Maths 
    outline:Diff&integral equns.                   prereq:SAT-101 & MAT201 
 Laplace Trans,         outline:Diff. &integral eq 
 Fourier Trans}               Laplace Trans,   
                                          Fourier Trans}  
   
(c) Participant temporal object  Advance-Maths         (d) Offstage object Eng-Maths 
 
Figure 6: Details of offstage object Eng-Maths and  its participant temporal objects 
 

 Now we find life-span of the offstage object TOa.e and the participant object TOa.  The 

set of time-spans of stages and life-span of the participant object TOa are given as follows: 
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Ta = {[t1,a, t2,a), [t2,a, t3,a),...., [tk,a, tk+1,a),...., [tn,a, now]} where t1,a was the time instance when 

the first stage (birth stage) of the temporal object TOa was created, and tn,a was the time instance 

when the current stage of the temporal object TOa was created. Here, the set Ta is the set of time-

spans of all stages of the participant object, the time interval [t1,a, t2,a) is the time-span of the 

birth stage, and the time interval [t1,a, now] is the life-span of the participant object. 

 The set of time-spans of the stages and the life-span of the offstage object TOa.e are 

given, respectively, as follows: 

Ta.e = {[t1,a.e, t2,a.e) , [ t2,a.e, t3,a.e),...., [tj,a.e, now]} and life-span of TOa.e = [t1,a.e , now]. 

 Figures 5 and 6 exhibit an example of the offstage object Eng-Maths which is 

constructed in the family Course. The offstage objects Eng-Maths is defined at the time instance 

1975 by sharing knowledge of two participant objects Statistics-2 and Advance-Math through the 

offstage S1,statistics-2 and S1,Advance-Maths, respectively (see Figure 5). Each participant object has one 

stage (birth stage) at the time instance 1975 when the offstage object was defined. Figure 6(a) 

shows the ROF of the family Course. The details of the stages S1,statistics-2 and S1,Advance-Maths of the 

participant objects are shown in Figures 6(b) and 6(c), respectively. Figure 6(d) shows the birth 

stage of the offstage object Eng-Maths. A temporal condition (Eng-Maths.1975 ≥  Statistics-

2.1970) ∧ (Eng-Maths.1975 ≥  Advance-Maths.1969) must be true before the creation of the 

offstage object, where 1970 and 1969 are the time instances when the offstages of the participant 

objects were defined.  

 If an offstage object is sharing knowledge of only one participant object, then this is 

analogous to simple inheritance in the class-based approach, and if an offstage object is sharing 

knowledge from more than one participant temporal objects, then this is similar to the concept of 

multiple inheritance in the class-based approach. An offstage object has some similarities and 

differences with an object which is defined by using the class-based approach. For example, an 

offstage object in a family and an object of a class both share the same common knowledge ROF 

and class structure respectively. In a family, state of a temporal object can also be shared by an 
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offstage object, whereas, in the class-based systems it is usually not allowed. The concept of an 

offstage enhances the reusability of knowledge within a family, and this benefit is not available 

in the class-based approach. 

2.3 Families of the TOS 

 The concept of a family is used to assemble a group of temporal objects sharing a 

common context. All temporal objects within a family can be handled in a similar fashion by 

responding uniformly to a set of messages. A set of structures and\or states (available at the time 

of defining a family) defines a common context of the family. The common context of a family is 

referred to as the root-of-family (ROF) where common knowledge about all its temporal objects 

is maintained (see (Fotouhi et al, 1992a; Fotouhi et al, 1992b; Fotouhi et al, 1994; Shah, 1992) 

for more details). Temporal objects of a family can be defined only after the construction of 

ROF of the family. 

RTOS

Time = 1965                Time = 1966                  Time = 1960      Time=1970

  ROF        ROF       ROF                      ROF

  
  ENG-66  Body-70   Vehicle-80

                ENG-68          Wheel-75

 

            Figure 7:  Vehicle design and development system - an example of TOS 
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 In the class-based object-oriented systems, a class is used to assemble a set of objects 

which share some common assets as it is done in a family in the TOS. However, a family 

encapsulates more features than a class. For example, in a class, the structure of the class is 

always shared by all its states (or instances). A change to the class structure not only affects the 

states of the class,  it  also propagates to the structures and states of all subclass of the class. In a 

family, however, the structure or state of each temporal object of the family shares the ROF only 

at the time when its birth stage is created. After that, each temporal object is independent and a 

change in a temporal object does not effect the ROF or any other objects of the family. In other 

words, the ROF of a family is read-only, it does not change with time. Time is associated with a 

temporal object and ROF of the family (see Figures 7- 9). 

 Family Vehicle                time=1970 

                 ROF      ROF(Vehicle) 
        Aggregation-of: 
        {Engine,Body,Wheel} 
        Instance-Variables:   
  time=1979      { time=1979 
         engine:ENG-66.1967             model#, 
         body:Body-70.1968      year-of-model, 
      wheel:Wheel-75.1969     net-weight} 
                      model#:M-151      Methods: 
               year-of-model:1980-A       {assemble, test-it}  
                    net-weight:550   
   
       Figure 9: ROF of  Family Vehicle 
                       Vehicle-80 
 
Figure 8: TCO Vehicle-80 and it’s subobjects 
 
 In the TOS two types of families, simple families and complex families, can be defined. A 

simple family represents an independent object development environment in which temporal 

objects can be constructed without sharing knowledge of other families. For example, in Figure 

7, the families Engine, Body and Wheel are simple families. Two simple families do not share 

any knowledge. A simple family is analogous to a class in the class-based approach, which has 

no super-class like the  system class or root class. 
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 In existing class-based object-oriented systems, a complex object is defined as an object 

which can have another object as the value of a particular instance variable (Kim et al, 1987). 

We extend our definition of a family to complex family which provides a facility for the 

integration of non-homogeneous temporal objects of different families in order to build another 

temporal object which is referred to as temporal complex object (TCO).  The components of a 

TCO are temporal objects of non-homogeneous families, and the temporal objects which take 

part in the construction of a TCO are called subobjects (or components) of the TCO (for details 

see (Fotouhi et al, 1992b; Shah et al, 1993b). 

 A new TCO, TCOc, can be defined in a family Fc at a given time instance t1,c with r 

number of subobjects of r different simple families. The birth stage of the TCO, TCOc, may be 

created at time instance t1,c if the temporal condition (t1,k ≤  t1,c) (tFc ≤  t1,c) is true for all k such 

that 1 ≤ k ≤  r,  where tFc is the time instance when the complex family Fc was created, and t1,k is 

the time instance when birth stage of the k-th subobject was created. This temporal condition 

ensures that all temporal subobjects and the complex family exist before the existence of the 

TCO. Figure 8 shows the birth stage of the complex family Vehicle which is an aggregation of 

three simple families Engine, Body and Wheel. In this figure the TCO Vehicle-80 is constructed 

at time instance 1979 (denoted by Vehicle-80.1979) if the temporal condition, (ENG-

66.1967 ≤ Vehicle-80.1979) ∧ (Body-70.1968 ≤ Vehicle-80.1979) ∧ (Wheel75.1969 ≤  Vehicle-

80.1979) ∧  (Vehicle-Family.1970 ≤  Vehicle-80.1979) is true, where ENG-66.1967, Body-

70.1968 and Wheel-75.1969 are the time instances when the subobjects ENG-66, Body-70, and 

Wheel-75 are constructed in their families, respectively, and Vehicle.1970 is the time instance 

when the family Vehicle is constructed in the TOS. A TCO has all temporal parameters, time-

span, life-span, and life-sequence, like other temporal objects. ROF of the family Vehicle which 

was defined at a time instance 1979 is given in Figure 9.  

 Within the boundary of a simple family, we use the offspring technique and among the 

families we prefer the copying technique for knowledge sharing (Alashqur et al, 1989; Borning, 
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1986). The aggregation and integration of temporal objects into a TCO can generate certain 

conflicts and compatibility problems such as naming and scaling between a TCO and its 

subobjects. For example, Naming conflicts occur when two or more subobjects of a TCO contain 

instance variables or methods with the same name such as the instance variable weight which 

has been defined in subobjects Engine and Body as well as in the TCO Vehicle-80. We are 

currently investigating these issues. 

 In (Fotouhi et al, 1994), we proposed a temporal object-oriented query language (TOOL) 

for the TOS. The query Language TOOL is a superset of SQL. The proposed language can 

answer both the temporal and non-temporal queries on families (simple and complex). The 

TOOL uses a set of logical operators and a set of temporal operators of the SQL and TSQL, 

respectively (Clifford, 1982) (for more details and sample queries see (Fotouhi et al, 1994)). 

 
3.  Operators of the Temporal Object System (TOS) 

 In this section, we describe a set of operations (or operators)  that are proposed for the 

creation of families, temporal objects, and stages in the TOS. There are two main sets of these 

operations. The two sets of operations deal with the different operations that are related to the 

simple family and its temporal objects, and the complex family and its temporal object, 

respectively. Both types of families (simple family and  complex family) are defined in the TOS 

as children of the RTOS by designing ROF at a time instance (see Figures 1 and 7). The creation 

of a new family in a TOS by designing its ROF, adds a new object development environment to 

the TOS in which the new types of objects can be created. Addition of a stage either adds a new 

temporal object or  offstage object to a family, or it updates an existing temporal object by 

appending the new stage to the life-sequence of the existing temporal object. 

 

 

 



 
18

3.1  Simple Family Operations 

 In this section, we propose operations for defining simple families and simple objects.  

The following set of four operations are needed to design a simple family and its temporal 

objects.  

create-family (Fi, tFi): This operation creates a new family Fi in the TOS as child of the RTOS at 

a time instance tFi by allocating space for a new child node ROF of the family Fi. The contents 

of the ROF and a stage are the same; both contain two compartments: structure and state. The 

following set of two operations, fills the common knowledge (structure, state, or both) in the 

ROF of family Fi at the time instance tFi. The syntax of the two operations is as follows: 

def-ROF-structure (Fi)    
def-ROF-state (Fi)     
 
 The first operation def-ROF-structure (Fi) stores common instance variables and 

methods of the family in the structure compartment of the ROF of family Fi. This operation 

provides common structural and behavioral capabilities to all future temporal objects that will be 

defined in the family. The operation def-ROF-state (Fi) stores data values for the instance 

variables (if any) in the state compartment of the ROF of family Fi.  

 The following operations construct simple temporal objects in a given simple family. The 

syntax of the operations is given and described as follows: 

create-object (Fi, TOj, tTOj) if  tTOj  ≥  tFi: This operation creates a temporal object TOj in a simple 

family Fi at a time instance tTOj  by allocating space for the birth stage of the temporal object TOj. 

The temporal object is created only if the temporal condition (tTOj ≥   tFi) is true where tFi  is the 

time instance when the family Fi was created in the TOS. 

 The birth stage of the temporal object can be filled in with structure, state, or both by the 

following two  operations. These operations will also be used whenever a change occurs to a 

temporal object, and a new stage is defined to incorporate the change to the temporal object. 
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assign-structure(Fi , TOj , STOj): This operation allows the user to assign instance variables and 

methods to the stage STOj for the temporal object TOj. This operation further invokes separately 

the following two operations for defining instance variables and methods in the stage.  

assign-state(Fi, Toj, STOj): This operation enables the user to assign data values to locally defined 

and shared instance variables of the stage STOj of the temporal object TOj. 

 The following operation creates a new stage in a temporal object. 

create-stage (Fi, TOj, tk) if tk ≥ tTOj: The operation creates a new stage at time instance tk in the 

temporal object TOj of a family Fi, and it adds the new stage to the life-sequence of the temporal 

object (see Section 2).  The stage is created if the temporal condition tk ≥ tTOj is true where tTOj is 

the time instance when the last stage was defined in the temporal object. The current stage and 

the previous current stage are temporally dependent on each other. The operation stores any kind 

of change made to the temporal object TOj in the form of a new (current) stage. The current stage 

can be filled by the operations assign-structure( )and assign-state( ) which have already been 

described earlier. 

After introducing a set of operations for constructing simple families and simple 

temporal objects, we now describe operations to construct offstage objects and to renovate them. 

The renovation operation on an offstage object brings a fresh copy of one or more participant 

temporal objects. The fresh copy is shared by defining a new stage of the offstage object at a 

time instance. Details about renovation of offstage object can be seen in (Shah et al, 1993a and 

Fotouhi et al, 1994) 

create-offstage-obj (TOj,
k

k r

=

=

1
U {TOk* tk}, tij): This operation creates an offstage object TOj in a 

family environment by sharing knowledge of r number of temporal objects of the family at a 

time instance t1j. Before explaining the syntax of the operation, we first describe the terms and 

the index k which are used in the operation. These r number of temporal objects are referred to 

as participant objects. There are r time instances tk, where 1 ≤  k ≤  r corresponds to r number of 
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participant objects. A time instance tk indicates the time instance in the life-span of the 

participant object TOk, and all stages between the time instance tk up to the time instance t1k 

(when the participant object was created) from the life-sequence of the participant object are 

shared by the offstage object TOj. In other words, the knowledge (partial or complete life-

sequence) of the k-th participant object TOk which lies in the time interval [t1k, tk] is shared by 

the offstage object TOj at the time instance t1j. For each k, there exists an integer  m where m is 

the number of stages of the participant object TOk, and tk is the time instance which identifies the 

offstage Si,k from the life-sequence of the participant object, which is the i-th stage of the 

participant object TOk. There can be four different cases based on the values of the time instance 

tk to identify a partial or complete life-sequence for every participant object. 

 The temporally-ordered set ττττk  = {t1k, t2k, t3k , ...,..., tjk..., tnk}consists of temporal 

parameters of the life-sequence Lk of the participant object TOk. The set ττττk and the time instance 

now are displayed graphically in Figure 10 on the time line. As mentioned earlier the time 

instance now represents present time instance. We have assumed earlier that the participant 

object TOk has n number of stages at the time instance tk when the offstage object TOj is being 

constructed. Therefore there will be n different points on the time line corresponding to each 

stage, or corresponding to each member of the set ττττk, and one point is for the time instance now 

to show the present time instance (see Figure 10). The point t0 is showing the origin or starting 

time instance of the time line. It may be interpreted as the time instance when the family or the 

TOS’s application was created. The time instance tk is displayed below the time line and its 

position is shown by an upward arrow at different places on time line in each case (see Figure 

10).  

 In Figure 10, four possible cases are identified where the time instance tk can be 

positioned in the life-sequence of the participant object TOk. A complete or partial life-sequence 

of the participant object TOk, which lies in the time interval [t1k, tk] is shared by the offstage 
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object TOj. The t1k is the time instance when the birth stage S1,k of participant object TOk was 

constructed. The time instance tk can take four different positions in the life-sequence of the 

participant object based on its numeric value. The description of the four cases is as follows: 

 

     t0     t1k t2k  t3k              tjk          tnk                      now 
Case-1       
               tk 

     t0     t1k t2k  t3k              tjk          tnk                      now 
Case-2   
                  tk 

  
            t0     t1k t2k  t3k              tjk          tnk                      now 
Case-3  
       tk 

    t0     t1k t2k  t3k              tjk          tnk                      now 
Case-4  
           tk   

              Figure 10:  Four different possible cases of the time instance tk 

 

 Case-1: (tk ∈  ττττk) ∧  (tk ≠   now ) In this case, the time instance tk is a discrete time 

instance and it may lie at the beginning or at the end of time-span of a stage of the participant 

temporal object TOk. In Figure 10/Case-1, time instance tk is identified as a time instance tjk 

which is a member of the set  ττττk, i.e., (tk = tjk). It is the time instance when the j-th stage Sj,k of 

the participant object is constructed.  Therefore, the stage Sj,k is the offstage, and a partial life-

sequence {S1,k, S2,k, S3,k, ....., Sj,k} of the participant object TOk will be shared by the offstage 

object TOj. 

 Case-2:  (tk= now), i.e., the time instance tk is an extreme end of life-span [t1k, now] of 

the participant object TOk (see Figure 10/Case-2). In this case, complete life-sequence of the 

participant object will be shared by the offstage object, because the time instance now includes 

the current stage of the participant object and its current stage is also the offstage. 
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 Case-3: (tk ∉ ττττk) ∧  (tk ≠   now), but  the time instance tjk ∈  [t1k,now], i.e., t1k ≤  tk ≤  now, 

where  [t1k,now] is the life-span of the participant object TOk. In this case, the time instance tk is 

not a member of the set ττττk. The time instance tk lies in time-span of any stage of the participant 

object, as shown in Figure 10/Case-3. In the figure, we have assumed that the time instance tk ∈  

[t3k, t4k] which is the time-span of the stage S3,k of the participant object. This stage will be the 

offstage of the participant object and a partial life-sequence from the birth stage to the offstage 

will be shared by the offstage object TOj. In Figure 10/Case-3, the stage S3,k is the offstage of the 

participant object TOk and the partial life-sequence {S1,k, S2,k, S3,k} is shared by the offstage 

object TOj at the time instance tk. 

 Case-4: tk ∉  [t1k,  now)  It means that the time instance tk does not belong to the set ττττk, 

the time instance tk is a time point before the birth of the participant object TOk, and its life-span 

does not include the time instance tk. Therefore, no knowledge of the participant object will be 

shared in this case. In other words, the time instance tk is not a valid time instance for the 

participant object, and no knowledge of the participant object can be shared by the offstage 

object TOj at the time instance tk. 

 The set 
k

k r

=

=

1
U {TOk *tk} enumerates a set of offstages from the set of participant objects 

that will be shared by the offstage object. In other words, a set of life-sequences (partial and 

complete) of the participant objects is extracted depending upon the values of the time instance tk 

from every life-sequence of the participant object. The set of partial or complete life-sequences 

will be shared by the offstage object TOj at the time instance tk. 

 Before creating the birth stage of the offstage object TOj at the time instance t1j a 

temporal condition (t1j ≥  tk) for all 1 ≤  k ≤  r is verified. The birth stage S1,j of the offstage 

object TOj  shares knowledge from the finite set of participant objects. The set of offstage 

∪ {Si,k} where 1 ≤ i ≤  m and 1 ≤  k ≤  r and for each k ∃ an integer m such that 1 ≤ i ≤  m, is 
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stored in the parents compartment of the birth stage S1,j of the offstage object. The birth stage of 

the offstage object is a complex stage in nature. Its other three compartments-structure, state, or 

both can be filled by using the set of the two operations (i.e., assign-structure ( ) and assign-

state( )) which are already described.  

ren-offstage-obj (Fc, TOc,
k

k r

=

=

1
U {Fj * TOj * tj}, tTOc)  if tTOc ≥  tj for all 1 ≤  j ≤  k ≤ r:  This 

operation renovates an existing offstage object TOc at the time instance tTOc by creating its new 

stage by using a finite set of the participant object 
k

k r

=

=

1
U {TOk}. The semantics of the finite set 

j

j r

=

=

1
U {Fj * TOj * tj} and the time instance tj are the same as described in the previous operation, 

but the range of the index j can be different, because the number of participant object taking part 

in the renovation may be equal to or less than the number of participant temporal objects which 

have taken part in the construction of the offstage object in the past where  past ≤ tTOc. It is also 

possible that the number of stages of each participant  object in the case of renovation may be 

greater than the number of stages of each participant temporal object which took part initially in 

the construction of the offstage object. The offstage object in renovated after validating the 

following two conditions: 

(i) In the past where (tTOc ≥   past) the temporal object TOc was defined in a family as an offstage 

object by sharing a finite set of participant objects 
j

j r

=

=

1
U {TOj}. It means that the set 

j

j r

=

=

1
U {TOj} of 

participant objects was also shared earlier at the time instance t1,c when the offstage object TOc 

was defined by constructing its birth stage S1,j. Now only those temporal objects which are 

member of the set
j

j r

=

=

1
U {TOj} can take part in the renovation of the offstage object TOj at the time 

instance tTOc where (tTOc ≥   past). The time instance past is a time instance when the offstage 

object was constructed or renovated. The operation checks the membership of the participant 
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objects which are participating in the renovation. Because only those participant objects can 

participate in renovation of an offstage object which earlier participated in the construction of 

the offstage object. The alignments of the temporal objects may be different in the syntax of the 

creation and renovation operations of an offstage object. 

(ii)  The temporal condition (tTOc ≥ tj) must be true, where 1 ≤  j ≤  r. This temporal condition 

ensures the temporal availability of knowledge of each participant object. It means that the 

knowledge which is not acquired by a participant object at the time instance tj, cannot be 

shared now by the offstage. 

3.2  Complex Family Operators 

 During the definition of a complex family, we define a configuration to reuse the 

knowledge from a finite set of the existing families in another family (complex family) of the 

TOS. The set of families is referred to as constituent families, and the temporal objects of the 

constituent families are referred to as subobjects of a temporal complex object (TCO). 

 In this section we describe a set of operations for designing a complex family, a TCO, 

and to renovate a TCO.  The set of operations is described as follows:  

create-comp-family (Fc, 
j

j r

=

=

1
U {Fj}, tFc) if tFc  ≥  tFj: This operation creates a complex family Fc at 

the time instance tFc in the TOS as an aggregation of a finite set of families 
j

j r

=

=

1
U {Fj} where r is 

an integer, and it can be referred to as the degree of the aggregation which is the number of 

constituent families of the new complex family Fc. The set 
j

j r

=

=

1
U {Fj} defines a permanent 

configuration of the complex family Fc and all temporal objects of the complex family can use 

the temporal objects only from the set of families 
j

j r

=

=

1
U {Fj} after the creation of the complex 

family. The temporal condition for all j, (tFc ≥  tFj) where  1 ≤  j ≤  r must be true before the 

creation of the family. The temporal condition ensures the temporal correctness of the creation of 
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the complex family Fc. The temporal condition also ensures that all constituent families must 

exist before participating in the aggregation of a new complex family. As all families are directly 

children of the root node of the TOS (see Figure 1 and Figure 7), so the root of the TOS (i.e., 

RTOS) is also the parent of the newly defined complex family Fc. Each family is created with the 

creation of its ROF. This operation creates a space for ROF of the family Fc and the set 

j

j r

=

=

1
U {Fj}of families in its parents compartment. Later, the common knowledge of the complex 

family can be filled in by the two operations, i.e., def-ROF-structure ( ) and def-ROF-state ( ). 

These operations are already defined in the previous section. After the operations create-family 

and create-comp-family which create a simple family and a complex family, respectively, the 

process of filling in the ROF of a family (simple or complex) is the same. 

 After describing the operations related to  complex families, we now describe an 

operation to create a temporal complex object (TCO) in a complex family. 

create-TCO (Fc, TOc, 
j

j r

=

=

1
U {Fj * TOj* tj}, tTOc): This operation creates a TCO TOc at a time 

instance tTOc in a complex family Fc by sharing r number of subobjects of the families which are 

mentioned in the operation by the set 
j

j r

=

=

1
U {Fj * TOj* tj}. The complex object is created if the 

temporal condition (tj ≤  tTOc) ∧  (tFc ≤  tTOc) is true for all j, 1 ≤ j ≤ r where tFc is the time 

instance when the complex family was created. The temporal condition ensures that all temporal 

subobjects given in the operation and the complex family must exist before the construction of 

the TCO. The semantics of the set 
j

j r

=

=

1
U {Fj * TOj* tj} and the time instance tj are the same as 

they are described in the operation for creating an offstage object. In the construction of a TCO 

in a complex family, a number of subobjects from different constituent families are transported 

into the family. The construction of a TCO causes transportability of knowledge among the 

families of the TOS. The birth stage of the TCO contains the set of r temporal subobjects. The 
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knowledge of r temporal subobjects from their respective families, is shared by the TCO through 

its birth stage S1,k. The alignment of the member tuples (family, subobject, time instance) as 

given in the set 
j

j r

=

=

1
U {Fj * TOj* tj} may be different from the alignment of the set of families 

j

j r

=

=

1
U {Fj} that are used while designing the complex family Fc. The operation will be valid only if 

a family which is a member of the set 
j

j r

=

=

1
U {Fj * TOj* tj} is also a member of the set 

j

j r

=

=

1
U {Fj}. 

 The birth stage of the TCO can be defined by sharing the local properties and/or 

assigning state  using the two operations which are already defined for this purpose. 

ren-TCO (Fc, TOc, 
j

j p

=

=

1
U {Fj * TOj *tj}, tTOc): This operation renovates an existing TCO TOc at a 

time instance tTOc. The operation validates the following conditions before starting the process of 

renovation. 

( i )  The temporal condition (tj ≤  tTOc) for all 1 ≤  j ≤  r must be true, 

(ii) All temporal subobjects  
j

j p

=

=

1
U {Fj * TOj} which are participating in the renovation must  

belong to the constituent families of the complex family F, and the subobjects which 

participated in the construction of the original TCO TOc, can participate in the renovation of 

the TCO. The semantics for alignment of this operation are similar to those that are already 

mentioned in the create operation of a TCO. 

 The operation renovates the TCO TOc by adding a stage, say,  Si,c in the life-sequence of 

the TCO. The renovation brings a fresh knowledge of one or more subobjects in the TCO. 

 
4. Implementing the Operators of the TOS 

 Figure 11 depicts the overall architecture of the temporal object system (TOS). Object 

Manager (OM) is an important module of the TOS and is responsible for providing the basic 

functionality to the TOS. We developed a prototype of the OM that performs a subset of the set 
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of operations of the OM, that are described in Section 4. The developed OM performs three 

basic operations: creation of a new temporal object in a simple family, creation of a new stage in 

an existing temporal object, and creation of an offstage in a family. The operations concerning 

renovation of a complex temporal object and offstage object and other operations related to the 

creation of complex families and complex temporal objects (see Section 4) are not yet 

implemented. We are actively working on these operations and in the near future they will be 

added to the developed OM. A complete design of the OM was reported in (Sayegh et al, 1994).  

In the next section we give salient features of the design. 
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   Figure 11:  Architecture of the Temporal Object System (TOS) 
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 Figure  12: Architecture of the object manager and other modules 
 
4.1 Design of the Modules 

 The OM consists of four modules: temporal object module, stage module, instance-

variable module, and method module (see Figure 12). As shown in the figure, Family Module 

invokes the sub-modules of the OM to retrieve and store  information such as ROF of a family. 

Family Module is invoked by the main driver, i.e., RTOS Module (see Figure 12).  In the next three 

sections we describe the four sub-modules (or components) the OM. 

 The architecture of the object manager and other modules is depicted in Figure 12. The 

RTOS Module interacts with Family Module, and Family Module interacts with Temporal 

Object Module (see Figure 12). These two modules, i.e.,  Family Module and RTOS Module, 

are not components of the OM (the components of the OM are shown in a rectangle in Figure 

12) but they are also developed because their development is necessary for the working of the 

OM module. Here we briefly describe their functions and workings of these modules. 

 The module RTOS loads the RTOS-Control-File (file layout is given in the next section) 

once the system is turned on. The basic function of this module is to load the system primitives 

and to accept the commands. This module interacts with Family Module for system-level 

browsing.  When a new family is defined in the system, the module RTOS validates the temporal 

condition (for details see Section 4) before  the creation of the new family. 
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 Family Module is responsible for the creation of new families and their ROFs. It stores 

and retrieves ROFs of the newly defined families in Family-Control-File (layout is given in the 

next section). This module also validates the temporal condition before the creation of a new 

temporal object. This also interacts with Instance-Variable Module and the Method Module of 

the OM while defining the instance-variables and the methods in the ROF of the family, 

respectively. We summarize the main functions of the Family Module as follows: 

(i) It stores and retrieves ROF and other information of a family. 

(ii) It keeps track of the instance-variables and methods associated with ROF of a family. 

(iii) It keeps track of temporal objects associated to a family. 

4.1.1 Temporal-Object Module 

 The main task of this module is to create a new temporal object in a family, and to 

invoke the Stage Module that creates the birth stage of the new temporal object or creates a 

current stage of an existing temporal object. This module also validates the temporal condition 

before the creation of a temporal object. The Temporal-Object Module is mainly responsible for 

storing and retrieving the information pertaining to temporal objects from the Temporal-Object-

Control-File (layout is given the next section), and to keep track of association between temporal 

objects and their stages.  

4.1.2 Stage Module 

 This module gives an environment for creating a new stage in a temporal object and fill-

in the contents (instance-variables and methods) of the stage by activating the two modules: 

Instance-Variables Module and  Method Module (see Figure 12). The module is responsible for 

the storage and retrieval of the contents of stages in Stage-Control-File. keeps track of the 

associations between stages and its instance-variable and methods . 

4.1.3 Instance-Variables and Method Modules 

 The Instance-Variable module basically stores and retrieves the data type and data  of 

instance-Variables from Instance-Variables-Control-File (layout is given in the nest section). 
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This module also keeps track of association between instance-variables and stages of a temporal 

object. 

 The Method Module stores and retrieves methods from  Method-Control-File (layout is 

given in the next section). This module is also responsible for the compilation, code generation, 

and invocation of the methods. This module keeps track of association between the methods and 

stages of a temporal object. 

4.1.4 Control Files 

 The four modules of the Object Manager, Family Module, and RTOS Module that are 

described in the previous sections. These modules use five different control files for storage and 

retrieval purposes. The layouts of these control files are briefly given as follows: 

RTOS-Control-File: A file contains information about the application such as application 

creation time and name of application. 

Family-Control-File: This file keeps information about the families of the application. It 

contains family creation time, family name, starting address in Temporal-Object-Control-File of 

the first temporal object in a family, number of temporal objects in the family, starting address of 

the first instance-variable of ROF of the family in Instance-Variable-Control-File, number of 

instance-variables in ROF of the family, starting address of  the first method record of ROF in 

the family in the Method-Control-File, and  number of methods. 

Temporal-Object-Control-File: This contains temporal object creation time, system generated 

Object Identification Number (OID), temporal object name, starting address of the birth stage 

record in the Stage-Control-File, and number of stages in the temporal object. 

Stage-Control-File: This file contains stage creation time, starting address of  the first instance-

variable of stage in Instance-Variable-Control-File,  number of instance-variables in the stage, 

starting address of  the first method record in the Method-Control-File, and number of methods 

in the stage. 
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Instance-Variables-Control-File: This file contains  instance-variable name, instance-variable 

type, and data value of instance-variable (if any). 

Method-Control-File: This file contains method name, and method internal name (the internal 

name is system generated). The reason to keep this name is to avoid the conflict in the method 

names if the user creates two methods with the same name. 

4.2 Operators Implementation Using SELF 

4.2.1 Hardware and Software Configuration 

 We have implemented the object manager using the programming language SELF 

version 4.0 on a SUN Sparc Workstation running Solaries 2.4. The programming language SELF 

is a prototype-based object-oriented programming (OOP) language that is originally developed at 

Stanford University, and experimental versions of its compiler are developed by SUN 

Corporation (Chambers et al, 1989).  

4.2.2 Benefits of Using SELF for the Implementation 

We have selected this language as the implementation tool to implement  the three main 

modules which are the three groups of the TOS operators for a number of reasons (see Figure 

12). The SELF is a prototype-based and graphical-oriented OOP language.  As mentioned before 

the TOS model is a hybrid of the prototype-based and the class-based approaches and the SELF 

makes the contents of each stage whether it belongs to a temporal object or ROF of a family 

transparent to the user. This transparent property of the SELF makes all  the changes (stages) to a 

temporal object visible to the user and he can glance through the evolution of the temporal object 

The SELF supports the concepts of both instance-variables and methods. Any entry in an object 

in SELF is called a slot (Chamber et al, 1989). The slot could be a data slot or code slot, each has 

its own behavior. Data slots return the data they have once  called. Code slots, on the other hand, 

perform a task once they receive a message invoking them.  Code slots (SELF’s understanding 

of methods) can have parameters sent to them and a receiver object to send the results to. The 

language to code these slots are a SELF variation of SmallTalk.  
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By using SELF capabilities, custom objects can be created very easily. In terms of 

objects' creation, the operators in the Object Manager of the TOS need a system that allows 

creating families, temporal objects, and stages. SELF allows the end-user to create whatsoever 

object he/she thinks of.  We have created all the objects the TOS requires in addition to an object 

to be a reference to all objects, which is the RTOS object that represents the ‘root’ of the system 

and will hold the families within. 

In addition to creating objects, SELF provides the facility to create sequences. Sequences 

are objects in SELF that contains information about a list or group of objects. Using sequences 

we were able to group families under RTOS together, temporal objects together under any 

familyr, and stages under a temporal object in one bag. 

4.2.3 SELF Implementation of the Modules  

Our implementation of the TOS operators on SELF included the main system object 

(RTOS, simple family, temporal object, and stage) with all their system-oriented  attributes that 

were mentioned as fields in the control files (see Section 4.4). The fields of the control files are 

implemented as slots of objects, for example, fields of the RTOS-Control-File are implemented 

as slots in the RTOS object. For the temporal condition validation methods, we have added 

code-slots to the RTOS object to create families, temporal objects, and stages after validating the 

temporal condition provided as parameters to these methods. These methods can be accessed 

from anywhere in the TOS hierarchy since they are in the RTOS which is seen by all objects in 

the TOS.  The object manager of the TOS allows the user to create and maintain any number of 

temporal objects in a family, each with any number of attributes, methods and slots.The only 

limit is the amount of free memory available to the SELF 4.0 system. The TOS maintains some 

internal objects such as RTOS (the root object), and it keeps some objects to maintain the 

Window environment.   
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4.2.3.1  The RTOS Object 

 The RTOS object contains instance-variables and methods necessary for maintaining the 

TOS hierarchy with its various objects. It also maintains a list of all families in the system 

through familiesList (see Figure 13). Further it stores the name of the application and points to a 

time instance objects which records the creation time of the application as a whole.  

    

Figure 13: The ‘RTOS’ object and its slots          Figure 14: The 'family' object 

 

Since RTOS object is considered to be a unique object within the TOS, it was defined as a 

descendant of ‘traits oddball’ which in SELF 4.0, is considered to be a prototype from all unique 

non-colorable objects. This root object is automatically displayed whenever the system is 

initiated. Among other slots, the RTOS contains the necessary methods for creating new 

instances of families, temporal objects and stages, namely: the CreateFamily, CreateStage and 

CreateTemporal methods. 

4.2.3.2  The ‘Family’ Object - Family Module 
 
  The ‘Family’ object is intended to be a prototype of all families that will be created in the 

system.  A ‘family’ is declared to be a descendent of traits clonable, such objects can be cloned 

whenever necessary.  The family object also keeps tracks of the family’s name, time of creation, 

number of temporal objects within, and a list of the enclosed temporal objects.  In addition, other 
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attributes and methods can be added dynamically at run time to meet the requirements of the 

problem at hand. 

4.2.3.3  The ‘Temporal’ Object - Object Module 

The temporal object is intended to act as a prototype for the TOS’s temporal objects that 

are meant to be created and enclosed within families. A family may have any number of 

temporal objects as long as there is enough system memory. 

The temporal object is also a descendent of traits clonable. It stores the time of its 

creation, the number of stages within, its ID number, as well as the number and list of enclosed 

stages.  Other slots can be added and manipulated dynamically at run time. 

     

Figure 15: The 'Temporal' object             Figure 16: The 'Stage' object 
 
4.2.3.4  The ‘Stage’ Object 

Within a temporal object, there is a list of stages. The stages represent entities and 

changes applied on them as time evolves. 

The stage object acts as a prototype for creating new stages.  The stage object records the 

stage creation time, the name of the family it belongs to, the individual stage number, the name 

of the temporal object it belongs to.  Additionally, to enable a stage to inherit methods and 

attributes from preceding stages, a prevStage slot is declared.  This slot is intended to point to 

the immediate preceding stage and to inherent its attributes and methods. 
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4.2.3.5  The ‘tosWorld’ Object 

The ‘tosWorld’ object is used to maintain the TOS World environment along with its user 

interface elements and labels.  The ‘tosWorld’ object implements two useful methods: 

* ‘init’ for initiating and displaying a new instance of the TOS World Window, which is the 

main interface to the Object Manager, and 

••••    ‘kill’ to terminate a TOS World Window. 

4.2.3.6 The Time Stamp Object 

The ‘timestamp’ object is a general object used by the different objects within the TOS to 

record the creation time.  If a programmer likes to change time format and/or intervals he only 

needs to tamper with the ‘timestamp’ object. 

 
Figure 17: The 'tosWorld' Window 

 
4.3 Using the Object Manager 

 There are two ways for the end-user to utilize the OM in the environment of  SELF.  A 

user can directly use the graphical interface of the ‘tosWorld’ that is built over the graphical 

interface of SELF 4.0.  In this way, the user can create and manipulate objects visually.  The 

whole ‘tosWorld’ environment along with its various families, stages and temporal objects can 

be preserved by the ‘save snapshot’ feature of SELF 4.0.  As an alternative, a user may write a 
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complete SELF script that utilizes the functionality made available within the ‘RTOS’ object.  

Such scripts can be run under the  ‘tosWorld’ environment directly. 

 
5.  Conclusions and Future Work 

5. 1 Conclusions 

 We briefly described the TOS, an object-oriented system, which uses a hybrid approach 

of the class-based and prototype-based approaches, and utilized the merits of both techniques.  

The concept of family is similar to the concept of a class, with the difference that families in the 

TOS are not organized into a class-hierarchy (or class lattice) as it is done in the class-based 

object-oriented systems. The TOS is a collection of families organized in a two-level hierarchy.  

We extended the concept of a family to a complex family in order to share knowledge of existing 

families. The concept of complex family enhances reusability and transportation of objects 

knowledge among them. We associate time dimension with each activity of the TOS. 

 In this paper we defined and described the operators of the TOS and reported on their 

implementation. These operators are grouped into three different modules: Object Module (or 

Object Manager), RTOS Module, and Family  Module  The grouping is based on the 

functionality’s of the operators. The operators are implemented using OOP SELF version 4.0. 

This implementation gives a basic environment of the TOS where simple families and simple 

temporal objects can be created and updated.  

5.2 Future Work 

 We intend to further extend the current implementation of modules to include remaining 

un-implemented operators of these modules. This extension will provide more functionality to 

the TOS such as creation of complex families, temporal complex objects, and renovation of 

objects. We also intend to develop other modules of the TOS  that are given in Figure 11. 

 Additionally, we are in progress of porting TOS to Java. The project will focus on 

providing a graphical platform-independent system in which the object manager will run as a 
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Java applet with a GUI interface such that it can be executed within a web browser while 

providing the ability to create and manipulate objects graphically.  Furthermore, by using 

emerging technologies like Java's support for RMI (Remote Method Invocation), we are 

considering to expand the functionality of the OM so it can support the creation and 

manipulation of distributed objects. 

 

References 

Agrawal, R., Buroff, S.,  Gehani, N., and Shasha, D (1991), “Object Versioning in Ode,” 
 Proceedings of the 7th IEEE Int. Conference on Data Engineering, pp. 446-445. 
Alashqur, A. M.,  Su, S. Y. W., and Lam,  H. (1989),  “OQL: A Query Language For 
 Manipulating  Object-Oriented Databases,” Proceedings of  15th International 
 Conference. on VLDB, pp. 433-442. 
Borning, A. H. (1986), “ Classes Versus Prototypes in Object-Oriented Languages,” ACM/IEEE 
 Fall Joint Conference, pp. 36-40. 
Chambers, C., Ungar, D., and Lee, E. (1989), “An Efficient Implementation of SELF a 
 Dynamically-Typed Object-Oriented Language Based on Prototypes,” Proceedings of  
 the ACM  International Conference on Object-Oriented Programming Languages, 
 Systems and Applications (OOPSLA’89), pp. 49-70. 
Clifford, J. (1982), “A Model for Historical Databases,” Proceedings of Logical Bases For 
 Databases, Toulouse, France. 
Dutta, S., (1989), “Generalized Events In Temporal Databases,“ Proceedings of the 5th IEEE 
 International Conference on Data Engineering, pp. 118-126. 
Fotouhi, F., Shah A., and Grosky, W. (1992a), “TOS: A Temporal Object System,” Proceedings 
 of  the  4th Inl. Conference on Computing. &  Information, Toronto, Canada, pp. 356. 
Fotouhi, F., Shah A., and Grosky, W. (1992b), “Complex Objects in the Temporal Object 
 System,” IEEE Post-Proceedings of the 4-th Int. Conference on Computing & 
 Information, pp. 384. 
Fotouhi, F., Shah. A., Ahmed, I., and Grosky (1994), TOS: A Temporal Object-Oriented 
 System,” Journal of Database Management, 5(4), pp. 3-14. 
Gadia, S. K., and Yeung, C. S. (1991), “Inadequacy of Interval Timestamps in Temporal 
 Databases,” the Information Sciences Journal, 541(1&2), pp. 1-22. 
Katz, R. H., Chang, E., and Bhatega, R. (1986), “Version Modeling Concepts for Computer-
 Aided  Design Databases,” Proceedings of the ACM SIGMOD Conference, pp. 379-386. 
Kim, W., Banerjee, J., et al (1987), “Composite Object Support in an Object-Oriented Database 
 System,” Proceedings of  the ACM  International Conference on Object-Oriented 
 Programming Languages, Systems and Applications (OOPSLA’87),), pp. 118-125. 
Kim, W., (1990), “Introduction to Object-Oriented Databases,” The MIT Press, Cambridge, 
 Massachusetts. 
Ling D. H. O., and Bell, D. A. (1990), “Taxonomy of Time Models in Databases,” Information  

& Software Technology Journal, 32(3),  pp. 215-224. 
Maier, D. (1986), “Why Object-Oriented Database Can Succeed Where Others Have Failed,” 
 Proceedings  of International Workshop on Object-Oriented Database Systems, 
  pp. 227. 



 
38

Nguyen, G. T., and Rieu, D. (1989), “Schema Evolution in Object-Oriented Database Systems,” 
 Data & Knowledge Engineering Journal, North-Holland, 4(1), pp. 43-67. 
Roddick, J. F., (1992), “Schema Evolution in Database Systems  - An Annotated Bibliography,”   

ACM-SIGMOD Record, 21(4), pp. 35-40. 
Sayegh, T., Shah, A., Faraj, I., Fotouhi, F., and Grosky, W. (1994), “Design of Object Manager 
 For the TOS,”  the VIII International Symposium in Informatics Applications 
 (INFONOR94), Chile, pp. 103-109. 
Shah, A., (1992), “TOS: A Temporal Object System,”  Ph.D. Dissertation, Wayne State 
 University, Detroit, Michigan, USA. 
Shah, A., Fotouhi F., and Grosky, W. (1993a), “Offstage objects and their Renovation in the 
 Temporal Object System TOS,” the 3rd International Symposium on Database for 
 Advance Applications, Daejeon, Korea, April 6-8, pp. 306-312. 
Shah, A., Fotouhi, F., and Grosky W. (1993b), “Renovation of Complex Object in the TOS,”  

the 12th Annual IEEE International Phoenix Conference on Computers & 
 Communications, Scottsdale, Arizona, USA, pp. 203-209. 

Shah, A.,  Fotouhi, F., Grosky, W.,  Al-Dhelaan, A., and Vashishta, A. (1993c), “A Temporal 
 Object  System For a Construction Environment,” Proceedings of the XIII Conference of 
 the Brazilian Computer Society (SEHOSH-90), Vol. 1,  pp. 211-225. 



 
39

 
 

Appendix 

 
 
       A circle represents a stage of a temporal object. 
 
 
 
Time  
 
 
        An oval shape represents a temporal object. 
 
 
 
 
      A rectangle shape represents a family.  

 
 
 
   Time 
   
                                    A double oval shape represents a root-of-family (ROF). 

  
 
  
        RTOS   A double rectangle shape represents root of the TOS- RTOS. 
 
 
 
(1)   
A single point arrow represents direction of next stage of a  temporal object. 
 
 
(2)   
A dark arrow represents temporal inheritance. 
 
 
(3)   
A double arrow represents Renovation or temporal repeated inheritance. 


